Definition: Projective special linear group
$PSL\left ( n,\mathbb{F} \right )=\frac{SL\left ( n,\mathbb{F} \right )} {\left ( Z\left ( GL\left ( n,\mathbb{F} \right ) \right )\cap SL\left ( n,\mathbb{F} \right ) \right )}$
Proof:
Let $A \in GL\left ( 2,\mathbb{C} \right )$ and let >$\lambda=\sqrt{det\left ( A \right )^{-1}}\in\mathbb{C}$
Then, $det\left ( \left ( \lambda I \right )A \right )=det\left ( \lambda I \right )det\left ( A \right )=\lambda^{2}det\left ( A \right )=1$
So, $\lambda A=SL\left ( 2,\mathbb{C} \right )$.
Since $A =\left ( \lambda^{-1} I \right )\left ( \lambda A \right )$
we have
$\mathbf{\left ( 1 \right )}$
$\mathbf{ GL\left ( 2,\mathbb{C} \right )=SL\left ( 2,\mathbb{C} \right )Z\left ( GL\left ( 2,\mathbb{C} \right ) \right )}$
and so,
$\mathbf{\left ( 2 \right )}$
$\mathbf{PGL\left ( 2,\mathbb{C} \right )=PSL\left ( 2,\mathbb{C} \right )}$
Why is every matrices in GL the product of some matrices in SL and in the center of the group GL? (1) and (2) in bold is not very clear to me. Thanks in advance.