My brilliant counterexample just got back from the shop, shiny new paint job and all, so it's time for a second answer. The idea of the exercise is to create an integration formula where it is not true that
$$\int_{-1}^1y(x)dx=\int_{-1}^1q(x)dx+Cf^{(4)}(\xi)\tag{1}$$
For any $\xi\in(-1,1)$. To do this we are going to evaluate $y(x)$ for $x\in\{-1,-r,r,1\}$ and integrate the interpolation polynomial $q(x)$ from $-1$ to $1$ to get
$$\int_{-1}^1q(x)dx=\frac{1-3r^2}{3(1-r^2)}(f(1)+f(-1))+\frac{2}{3(1-r^2)}(f(r)+f(-r))\tag{2}$$
If $(1)$ were true, we could just integrate $f_4(x)=x^4/24$ both ways and the difference between the exact and $4$-point methods would be $C$. If $r=\frac13$, this is just Simpson's $\frac38$ rule and I think there may be some theorem about Newton-Cotes formulas satisfying equation $(1)$, Runge phenomenon and all. But when $r=\frac1{\sqrt5}$, this is the $4$-point Gauss-Lobatto formula, exact for polynomials of degree up to $5$. So for some values of $r$ near that, we might anticipate equation $(1)$ to break down, and in fact for $0.434\le r\le0.481$ my program does demonstrate this failure. It shows that the formula is exact for polynomials of degree up to $3$, then applies the formula $(2)$ to $f_4(x)$, thus determining $C$ assuming the truth of equation $(1)$. Then it applies equation $(1)$ to polynomials $f_k(x)$, where $f_k^{(4)}(x)=T_{k-4}(x)$ for $5\le k\le10$, where $T_n(x)$ is the Chebyshev polynomial of degree $n$. We can then solve for $f^{(4)}(\xi)$ and if $\left|f^{(4)}(\xi)\right|>1$ it is indicative of a failure of equation $(1)$ because $\left|T_n(x)\right|\le1$ for $x\in[-1,1]$. This means that for $0.434\le r\le0.481$ the simple addition of $f^{(4)}(\xi_1)+f^{(4)}(\xi_2)=f^{(4)}(\xi_3)$ would be shown invalid because the error just isn't equal to $Cf^{(4)}(\xi)$ for some $C$ and any $\xi\in(-1,1)$.
module simpson
use ISO_FORTRAN_ENV, only: dp => REAL64
implicit none
type T
procedure(f0), nopass, pointer :: f
end type T
contains
function s1(f,r)
real(dp) s1, r
procedure(f0) f
s1 = (1-3*r**2)/(3*(1-r**2))*(f(1.0_dp)+f(-1.0_dp))+ &
2/(3*(1-r**2))*(f(r)+f(-r))
end function s1
function f0(x)
real(dp) f0, x
f0 = 1
end function f0
function if0(x)
real(dp) if0, x
if0 = x
end function if0
function f1(x)
real(dp) f1, x
f1 = x
end function f1
function if1(x)
real(dp) if1, x
if1 = x**2/2
end function if1
function f2(x)
real(dp) f2, x
f2 = x**2
end function f2
function if2(x)
real(dp) if2, x
if2 = x**3/3
end function if2
function f3(x)
real(dp) f3, x
f3 = x**3
end function f3
function if3(x)
real(dp) if3, x
if3 = x**4/4
end function if3
function f4(x)
real(dp) f4, x
f4 = x**4/24
end function f4
function if4(x)
real(dp) if4, x
if4 = x**5/5/24
end function if4
function f5(x)
real(dp) f5, x
f5 = x**5/120
end function f5
function if5(x)
real(dp) if5, x
if5 = x**6/6/120
end function if5
function f6(x)
real(dp) f6, x
f6 = x**6/180-x**4/24
end function f6
function if6(x)
real(dp) if6, x
if6 = x**7/7/180-x**5/5/24
end function if6
function f7(x)
real(dp) f7, x
f7 = x**7/210-x**5/40
end function f7
function if7(x)
real(dp) if7, x
if7 = x**8/8/210-x**6/6/40
end function if7
function f8(x)
real(dp) f8, x
f8 = x**8/210-x**6/45+x**4/24
end function f8
function if8(x)
real(dp) if8, x
if8 = x**9/9/210-x**7/7/45+x**5/5/24
end function if8
function f9(x)
real(dp) f9, x
f9 = x**9/189-x**7/42+x**5/24
end function f9
function if9(x)
real(dp) if9, x
if9 = x**10/10/189-x**8/8/42+x**6/6/24
end function if9
function f10(x)
real(dp) f10, x
f10 = 2*x**10/315-x**8/35+x**6/20-x**4/24
end function f10
function if10(x)
real(dp) if10, x
if10 = 2*x**11/11/315-x**9/9/35+x**7/7/20-x**5/5/24
end function if10
end module simpson
program test
use simpson
implicit none
real(dp) r
(f8),T(f9),T(f10)]
type(T) :: f(0:10)
type(T) :: jf(0:10)
integer i
real(dp) C
write(*,'(a)',advance='no') 'Enter r:> '
read(*,*) r
f = [T(f0),T(f1),T(f2),T(f3),T(f4),T(f5),T(f6),T(f7),T(f8),T(f9),T(f10)]
jf = [T(if0),T(if1),T(if2),T(if3),T(if4),T(if5), &
T(if6),T(if7),T(if8),T(if9),T(if10)]
do i = 0, 3
write(*,*) i,s1(f(i)%f,r),jf(i)%f(1.0_dp)-jf(i)%f(-1.0_dp)
end do
i = 4
write(*,*) i,s1(f(i)%f,r),jf(i)%f(1.0_dp)-jf(i)%f(-1.0_dp)
C = (jf(i)%f(1.0_dp)-jf(i)%f(-1.0_dp)-s1(f(i)%f,r))
write(*,*) C
do i = 5, 10
write(*,*) i,s1(f(i)%f,r),jf(i)%f(1.0_dp)-jf(i)%f(-1.0_dp)
write(*,*) (jf(i)%f(1.0_dp)-jf(i)%f(-1.0_dp)-s1(f(i)%f,r))/C
end do
end program test