For a real number $a>0\;,$ How many real solution of the equation $\sqrt{a+\sqrt{a-x}} = x$
$\bf{My\; Try::}$ We can Write $\sqrt{a+\sqrt{a-x}} = x$ as $a+\sqrt{a-x}=x^2$
So we get $(x^2-a)=\sqrt{a-x}\Rightarrow (x^2-a)^2 = a-x\;,$ Where $x<a$
So we get $x^4+a^2-2ax^2=a-x\Rightarrow x^4-2ax^2+x+a^2-a=0$
Now How can i solve it after that, Help me
Thanks
