The matrix $B$ can be expressed using matrix $A$ and all one vector $\mathbf{1}$:
$$B=A+c\mathbf{11^{\text{T}}}$$
Thus, the both sides of determinants are:
$$
\det{(B)}=\det{(A+c\mathbf{11^{\text{T}}})}
$$
Then, we use a matrix determinant lemma. Generally, this theory describes following statement using an invertible matrix $M$ and a dyadic product $\mathbf{uv^{\text{T}}}$ (1).
Lemma:
$$ \det{(M+\mathbf{uv^{\text{T}}})}=(1+\mathbf{v^{\text{T}}}M^{-1}\mathbf{u})\det{(M)}
$$
Therefore, we can apply above lemma, and obtain below result:
$$
\det{(B)}=(1+c\mathbf{1^{\text{T}}}A^{-1}\mathbf{1})\det{(A)}
$$
By the way, skew-symmetric matrix has characteristic of several properties. Now, we show worthful properties that it is necessary for proof.
Property 1:
Generally, skew-symmetric matrix $A$ can be described
using an arbitrary square matrix $R$. Then, diagonal elements must be
zero:
$$A=\cfrac{1}{2}(R-R^{\text{T}})$$
Property 2:
Any quadratic form shows zero using skew-symmetric matrix $A$ and
arbitrary vector $\mathbf{x}$:
$$ \begin{aligned} \mathbf{x}^{\text{T}}A\mathbf{x}=&
\cfrac{1}{2}\mathbf{x}^{\text{T}}(R-R^{\text{T}})\mathbf{x} \\
=&\cfrac{1}{2}(\mathbf{x}^{\text{T}}R\mathbf{x}-\mathbf{x}^{\text{T}}R^{\text{T}}\mathbf{x})
\\
=&0 \end{aligned} $$
Property 3:
Inverse matrix $A^{-1}$ is also skew-symmetric matrix. Because:
$$ \begin{aligned} A^{\text{T}}=&-A \\ (A^{\text{T}})^{-1}=&(-A)^{-1}
\\ (A^{-1})^{\text{T}}=&-(A^{-1}) \end{aligned} $$
Therefore, $\mathbf{1^{\text{T}}}A^{-1}\mathbf{1}$ must be zero. Hence, $\det{(B)}=\det{(A)}$ will be established.
Memo:
- Dyadic product is also called outer product. Inner product makes a scalar, on the other hand outer product generates a matrix (see detail).