Firstly note the following, where $(a_i)$ are the digits of some decimal expansion:
$$\sum_{i=n}^\infty a_i 10^{-i}\le \sum_{i=n}^\infty 9. 10^{-i}=10^{-(n-1)}$$
The first bit follows from a comparison of the coefficients and the second is just a geometric progression calculation — it's essentially the "0.999...=1" result.
Now suppose we have two different decimal expansions $\sum_{i=m}^\infty a_i 10^{-i}$ and $\sum_{i=m}^\infty b_i 10^{-i}$ which differ for the first time when $i=n-1$. Without loss of generality, assume $a_{n-1}<b_{n-1}$, so $a_{n-1}+1\le b_{n-1}$. We have
$$\begin{align}
\sum_{i=m}^\infty a_i 10^{-i}&=\sum_{i=m}^{n-2} a_i 10^{-i}+a_{n-1}10^{-(n-1)}+\sum_{i=n}^\infty a_i 10^{-i} \\
&\le\sum_{i=m}^{n-2} a_i 10^{-i}+a_{n-1}10^{-(n-1)}+10^{-(n-1)} \\
&\le\sum_{i=m}^{n-2} a_i 10^{-i}+b_{n-1}10^{-(n-1)}
\end{align}$$
However, because the $a_i$s and $b_i$s match for $i \le n-2$,
$$\begin{align}
\sum_{i=m}^\infty b_i 10^{-i}&=\sum_{i=m}^{n-2} a_i 10^{-i}+b_{n-1}10^{-(n-1)}+\sum_{i=n}^\infty b_i 10^{-i} \\
&\ge \sum_{i=m}^\infty a_i 10^{-i}+\sum_{i=n}^\infty b_i 10^{-i}
\end{align}$$
So equality of the two expansions can only possibly be achieved if $\sum_{i=n}^\infty b_i 10^{-i}=0$, which is not the case if you insist on the decimal expansions being infinite. Thus an infinite decimal expansion of a number is unique.