Evaluate $\displaystyle\int_0^1 \sqrt{x^2+4x+1}\,dx$
I tried simplify by doing this: $$\int_0^1 \sqrt{x^2+4x+1}\:dx=\displaystyle\int_0^1 \sqrt{(x+2)^2-3}\:dx$$ Then, by letting $t=x+2$, $dt=dx$ $$\int_0^1 \sqrt{t^2-3}\:dt=\displaystyle\int_0^1 \sqrt{(t-\sqrt 3)(t+\sqrt 3)}\:dt$$ I tried solving $\displaystyle\int_0^1 \sqrt{t^2-3}\:dt$ by substituting: $$k=t^2-3, dt=\frac{dk}{2\sqrt{|k+3|}}$$ But that leads me nowhere: $$\frac{1}{2}\displaystyle\int_0^1 \frac{\sqrt{k}}{\sqrt{|k+3|}}\:dk$$ Any hints?