2

I have this equation which I need to prove or disprove-

$$\frac{z^3}{x^3+y^3+2xyz}=3$$$(x,y,z\in \mathbb N)$

I understand that for this equation to be true $z^3$ must be of the form $3k$ and $x^3+y^3+2xyz$ must be of the form $k$.

I suspect this equation has no solution but I cannot prove it.Am I on the correct line?

Thanks for any help!!

Soham
  • 10,120
  • 1
    This is a duplicate, I think, though I don't think the duplicate question had any answers-in fact, I think that it asked for an alternate proof, though it did not provide us any. – Chad Shin Apr 07 '16 at 06:43
  • 9
    This seems to be the one: http://math.stackexchange.com/questions/1727070/why-there-isnt-any-solution-in-positive-integers-for-z3-3x3-y32xyz. There apparently aren't any. – S.C.B. Apr 07 '16 at 06:45
  • $z^3$ is of the form $27k$. – TheRandomGuy Apr 07 '16 at 09:53
  • 2
    Where did you get the problem?? – Will Jagy Apr 07 '16 at 19:14
  • 1
    see http://meta.math.stackexchange.com/questions/22988/anyone-know-the-contest-this-is-from – Will Jagy Apr 08 '16 at 19:12
  • Nathan, Joseph Amal(6-BARC-REP) Revisiting Fermat's last theorem for exponent 3. (English summary) Indian J. Math. 51 (2009), no. 2, 379–390. http://arxiv.org/pdf/math/0309474v4.pdf – duje Apr 08 '16 at 22:25
  • @duje Thanks a lot!! – Soham Apr 09 '16 at 05:13

1 Answers1

5

Sigh. It seems possible to get the ratio an integer when $x,y,z$ are positive integers, but the smallest possible ratio is $5$ rather than $3.$ Also, usually only one triple with $\gcd(x,y,z) = 1$ for each ratio, I did eventually get a repeat for ratio $49.$ Strong preference for small prime factors, and few of them, in the ratios. Indeed, very few prime ratios, just $5$ and $13$ so far. Interesting that $3$ seems to be impossible when $9$ and $27$ work. This is $x,y,z \leq 1200.$

5           x: 4    y: 51   z:  95   ratio:  5 =  5
9           x: 4    y: 5   z:  21   ratio:  9 =  3^2
13           x: 1    y: 4   z:  13   ratio:  13 =  13
27           x: 19    y: 21   z:  156   ratio:  27 =  3^3
32           x: 3    y: 29   z:  112   ratio:  32 =  2^5
38           x: 39    y: 265   z:  1178   ratio:  38 =  2 19
49           x: 19    y: 32   z:  259   ratio:  49 =  7^2
49           x: 24    y: 71   z:  455   ratio:  49 =  7^2
72           x: 1    y: 2   z:  18   ratio:  72 =  2^3 3^2
96           x: 1    y: 5   z:  36   ratio:  96 =  2^5 3
112           x: 1    y: 3   z:  28   ratio:  112 =  2^4 7
128           x: 1    y: 11   z:  72   ratio:  128 =  2^7
134           x: 7    y: 9   z:  134   ratio:  134 =  2 67
152           x: 27    y: 58   z:  722   ratio:  152 =  2^3 19
169           x: 7    y: 132   z:  871   ratio:  169 =  13^2
248           x: 1    y: 6   z:  62   ratio:  248 =  2^3 31
256           x: 1    y: 5   z:  56   ratio:  256 =  2^8
362           x: 3    y: 37   z:  362   ratio:  362 =  2 181
392           x: 2    y: 3   z:  70   ratio:  392 =  2^3 7^2
432           x: 5    y: 43   z:  504   ratio:  432 =  2^4 3^3
512           x: 9    y: 31   z:  560   ratio:  512 =  2^9
837           x: 4    y: 11   z:  279   ratio:  837 =  3^3 31
1000           x: 13    y: 14   z:  610   ratio:  1000 =  2^3 5^3
1352           x: 3    y: 4   z:  182   ratio:  1352 =  2^3 13^2
1352           x: 7    y: 41   z:  936   ratio:  1352 =  2^3 13^2
1369           x: 1    y: 36   z:  481   ratio:  1369 =  37^2
1400           x: 1    y: 24   z:  350   ratio:  1400 =  2^3 5^2 7
1539           x: 1    y: 8   z:  171   ratio:  1539 =  3^4 19
1600           x: 2    y: 3   z:  140   ratio:  1600 =  2^6 5^2
1849           x: 1    y: 7   z:  172   ratio:  1849 =  43^2
2072           x: 15    y: 17   z:  1036   ratio:  2072 =  2^3 7 37
2457           x: 1    y: 12   z:  273   ratio:  2457 =  3^3 7 13
2646           x: 5    y: 11   z:  546   ratio:  2646 =  2 3^3 7^2
3042           x: 1    y: 23   z:  468   ratio:  3042 =  2 3^2 13^2
3528           x: 4    y: 5   z:  378   ratio:  3528 =  2^3 3^2 7^2
4563           x: 1    y: 4   z:  195   ratio:  4563 =  3^3 13^2
4732           x: 5    y: 11   z:  728   ratio:  4732 =  2^2 7 13^2
4750           x: 3    y: 5   z:  380   ratio:  4750 =  2 5^3 19
5616           x: 3    y: 17   z:  780   ratio:  5616 =  2^4 3^3 13
5824           x: 1    y: 10   z:  364   ratio:  5824 =  2^6 7 13
5929           x: 3    y: 8   z:  539   ratio:  5929 =  7^2 11^2
6048           x: 1    y: 5   z:  252   ratio:  6048 =  2^5 3^3 7
7688           x: 5    y: 6   z:  682   ratio:  7688 =  2^3 31^2
8000           x: 1    y: 2   z:  180   ratio:  8000 =  2^6 5^3
8192           x: 1    y: 3   z:  224   ratio:  8192 =  2^13
8232           x: 1    y: 8   z:  378   ratio:  8232 =  2^3 3 7^3
9317           x: 1    y: 20   z:  693   ratio:  9317 =  7 11^3
14112           x: 1    y: 17   z:  756   ratio:  14112 =  2^5 3^2 7^2
14792           x: 6    y: 7   z:  1118   ratio:  14792 =  2^3 43^2
16129           x: 1    y: 20   z:  889   ratio:  16129 =  127^2
16625           x: 1    y: 12   z:  665   ratio:  16625 =  5^3 7 19
16807           x: 3    y: 4   z:  637   ratio:  16807 =  7^5
33280           x: 1    y: 4   z:  520   ratio:  33280 =  2^9 5 13
39528           x: 1    y: 14   z:  1098   ratio:  39528 =  2^3 3^4 61
61504           x: 1    y: 6   z:  868   ratio:  61504 =  2^6 31^2
74304           x: 1    y: 7   z:  1032   ratio:  74304 =  2^6 3^3 43
100352           x: 1    y: 5   z:  1008   ratio:  100352 =  2^11 7^2

The denominator is nonzero with all positive variables, but there are plenty of ways to get zero with mixed signs, here are some with $\gcd(x,y,z) = 1.$

   x: -1    y: 1   z:  0
   x: -1    y: -1   z:  1
   x: 0    y: 0   z:  1
   x: -4    y: 8   z:  7
   x: -8    y: -4   z:  9
   x: -3    y: 9   z:  13
   x: -9    y: -3   z:  14
   x: -24    y: 36   z:  19
   x: -36    y: -24   z:  35
   x: -72    y: 96   z:  37
   x: -45    y: 75   z:  49
   x: -160    y: 200   z:  61
   x: -5    y: 25   z:  62
   x: -25    y: -5   z:  63
   x: -8    y: 32   z:  63
   x: -32    y: -8   z:  65
   x: -75    y: -45   z:  76
   x: -300    y: 360   z:  91
   x: -96    y: -72   z:  91
   x: -175    y: 245   z:  109
   x: -40    y: 100   z:  117
   x: -504    y: 588   z:  127
   x: -100    y: -40   z:  133
   x: -63    y: 147   z:  158
   x: -784    y: 896   z:  169
   x: -7    y: 49   z:  171
   x: -49    y: -7   z:  172
   x: -147    y: -63   z:  185
   x: -200    y: -160   z:  189
   x: -441    y: 567   z:  193
   x: -12    y: 72   z:  215
   x: -72    y: -12   z:  217

Allowing all signs, here are the ratios with $xyz \neq 0$ and denominator not zero, from $-200$ to $200,$ with $|x|, |y|, |z| \leq 600.$

-200           x: -1    y: 1   z:  20   ratio:  -200 =   -1 * 2^3 5^2
-200           x: -41    y: -39   z:  40   ratio:  -200 =   -1 * 2^3 5^2
-182           x: -15    y: 71   z:  182   ratio:  -182 =   -1 * 2 7 13
-182           x: -85    y: -19   z:  182   ratio:  -182 =   -1 * 2 7 13
-168           x: -17    y: 26   z:  378   ratio:  -168 =   -1 * 2^3 3 7
-162           x: -1    y: 1   z:  18   ratio:  -162 =   -1 * 2 3^4
-162           x: -37    y: -35   z:  36   ratio:  -162 =   -1 * 2 3^4
-140           x: -37    y: -3   z:  140   ratio:  -140 =   -1 * 2^2 5 7
-128           x: -1    y: 1   z:  16   ratio:  -128 =   -1 * 2^7
-128           x: -33    y: -31   z:  32   ratio:  -128 =   -1 * 2^7
-127           x: -9    y: 44   z:  127   ratio:  -127 =  -127
-125           x: -4    y: 1   z:  35   ratio:  -125 =   -1 * 5^3
-125           x: -4    y: 7   z:  5   ratio:  -125 =   -1 * 5^3
-125           x: -7    y: -1   z:  20   ratio:  -125 =   -1 * 5^3
-121           x: -8    y: -3   z:  11   ratio:  -121 =   -1 * 11^2
-112           x: -159    y: 419   z:  532   ratio:  -112 =   -1 * 2^4 7
-104           x: -10    y: 17   z:  182   ratio:  -104 =   -1 * 2^3 13
-104           x: -25    y: -14   z:  26   ratio:  -104 =   -1 * 2^3 13
-104           x: -35    y: 3   z:  208   ratio:  -104 =   -1 * 2^3 13
-98           x: -1    y: 1   z:  14   ratio:  -98 =   -1 * 2 7^2
-98           x: -29    y: -27   z:  28   ratio:  -98 =   -1 * 2 7^2
-95           x: -219    y: -61   z:  380   ratio:  -95 =   -1 * 5 19
-81           x: -1    y: 4   z:  9   ratio:  -81 =   -1 * 3^4
-81           x: -8    y: 11   z:  117   ratio:  -81 =   -1 * 3^4
-78           x: -29    y: 53   z:  468   ratio:  -78 =   -1 * 2 3 13
-77           x: -4    y: 15   z:  77   ratio:  -77 =   -1 * 7 11
-74           x: -115    y: 3   z:  518   ratio:  -74 =   -1 * 2 37
-72           x: -16    y: 1   z:  78   ratio:  -72 =   -1 * 2^3 3^2
-72           x: -1    y: 1   z:  12   ratio:  -72 =   -1 * 2^3 3^2
-72           x: -1    y: 4   z:  18   ratio:  -72 =   -1 * 2^3 3^2
-72           x: -25    y: -23   z:  24   ratio:  -72 =   -1 * 2^3 3^2
-72           x: -29    y: -10   z:  42   ratio:  -72 =   -1 * 2^3 3^2
-72           x: -2    y: 5   z:  6   ratio:  -72 =   -1 * 2^3 3^2
-72           x: -46    y: 151   z:  258   ratio:  -72 =   -1 * 2^3 3^2
-56           x: -100    y: -41   z:  126   ratio:  -56 =   -1 * 2^3 7
-56           x: -17    y: 33   z:  28   ratio:  -56 =   -1 * 2^3 7
-56           x: -1    y: 2   z:  14   ratio:  -56 =   -1 * 2^3 7
-56           x: -1    y: 4   z:  14   ratio:  -56 =   -1 * 2^3 7
-56           x: -29    y: -19   z:  28   ratio:  -56 =   -1 * 2^3 7
-56           x: -40    y: 3   z:  182   ratio:  -56 =   -1 * 2^3 7
-56           x: -6    y: -1   z:  14   ratio:  -56 =   -1 * 2^3 7
-56           x: -73    y: -23   z:  112   ratio:  -56 =   -1 * 2^3 7
-50           x: -1    y: 1   z:  10   ratio:  -50 =   -1 * 2 5^2
-50           x: -21    y: -19   z:  20   ratio:  -50 =   -1 * 2 5^2
-49           x: -60    y: -19   z:  91   ratio:  -49 =   -1 * 7^2
-45           x: -11    y: -4   z:  15   ratio:  -45 =   -1 * 3^2 5
-43           x: -4    y: 15   z:  43   ratio:  -43 =  -43
-38           x: -13    y: 29   z:  152   ratio:  -38 =   -1 * 2 19
-35           x: -8    y: 23   z:  35   ratio:  -35 =   -1 * 5 7
-32           x: -17    y: -15   z:  16   ratio:  -32 =   -1 * 2^5
-32           x: -1    y: 1   z:  8   ratio:  -32 =   -1 * 2^5
-24           x: -2    y: 5   z:  18   ratio:  -24 =   -1 * 2^3 3
-23           x: -37    y: 60   z:  299   ratio:  -23 =  -23
-21           x: -11    y: 8   z:  63   ratio:  -21 =   -1 * 3 7
-18           x: -13    y: -11   z:  12   ratio:  -18 =   -1 * 2 3^2
-18           x: -1    y: 1   z:  6   ratio:  -18 =   -1 * 2 3^2
-17           x: -32    y: 83   z:  221   ratio:  -17 =  -17
-16           x: -15    y: 31   z:  104   ratio:  -16 =   -1 * 2^4
-16           x: -3    y: -1   z:  4   ratio:  -16 =   -1 * 2^4
-14           x: -5    y: 13   z:  28   ratio:  -14 =   -1 * 2 7
-13           x: -15    y: 32   z:  91   ratio:  -13 =  -13
-8           x: -134    y: -31   z:  190   ratio:  -8 =   -1 * 2^3
-8           x: -1    y: 1   z:  4   ratio:  -8 =   -1 * 2^3
-8           x: -1    y: 2   z:  2   ratio:  -8 =   -1 * 2^3
-8           x: -2    y: -1   z:  2   ratio:  -8 =   -1 * 2^3
-8           x: -4    y: 7   z:  18   ratio:  -8 =   -1 * 2^3
-8           x: -4    y: 9   z:  14   ratio:  -8 =   -1 * 2^3
-8           x: -95    y: 134   z:  62   ratio:  -8 =   -1 * 2^3
-8           x: -95    y: 31   z:  268   ratio:  -8 =   -1 * 2^3
-8           x: -9    y: -7   z:  8   ratio:  -8 =   -1 * 2^3
-7           x: -12    y: 17   z:  49   ratio:  -7 =  -7
-6           x: -17    y: -7   z:  18   ratio:  -6 =   -1 * 2 3
-5           x: -104    y: 89   z:  315   ratio:  -5 =  -5
-5           x: -4    y: -1   z:  5   ratio:  -5 =  -5
-2           x: -1    y: 1   z:  2   ratio:  -2 =  -2
-2           x: -295    y: 471   z:  392   ratio:  -2 =  -2
-2           x: -31    y: -1   z:  38   ratio:  -2 =  -2
-2           x: -5    y: -3   z:  4   ratio:  -2 =  -2
4           x: -1    y: -1   z:  2   ratio:  4 =  2^2
5           x: -3    y: -2   z:  5   ratio:  5 =  5
5           x: 4    y: 51   z:  95   ratio:  5 =  5
7           x: -3    y: -2   z:  7   ratio:  7 =  7
7           x: -44    y: 123   z:  133   ratio:  7 =  7
9           x: -137    y: -67   z:  234   ratio:  9 =  3^2
9           x: -2    y: -1   z:  3   ratio:  9 =  3^2
9           x: 4    y: 5   z:  21   ratio:  9 =  3^2
12           x: -121    y: -65   z:  342   ratio:  12 =  2^2 3
13           x: -11    y: -6   z:  13   ratio:  13 =  13
13           x: 1    y: 4   z:  13   ratio:  13 =  13
13           x: -245    y: -106   z:  403   ratio:  13 =  13
13           x: -249    y: -206   z:  247   ratio:  13 =  13
13           x: -7    y: -5   z:  26   ratio:  13 =  13
19           x: -18    y: -11   z:  19   ratio:  19 =  19
20           x: -7    y: -3   z:  10   ratio:  20 =  2^2 5
27           x: 19    y: 21   z:  156   ratio:  27 =  3^3
27           x: -19    y: 52   z:  63   ratio:  27 =  3^3
27           x: -21    y: 52   z:  57   ratio:  27 =  3^3
27           x: -2    y: -1   z:  9   ratio:  27 =  3^3
27           x: -3    y: -1   z:  6   ratio:  27 =  3^3
27           x: -3    y: -2   z:  3   ratio:  27 =  3^3
32           x: -1    y: 3   z:  4   ratio:  32 =  2^5
32           x: 3    y: 29   z:  112   ratio:  32 =  2^5
37           x: -38    y: -27   z:  37   ratio:  37 =  37
49           x: 19    y: 32   z:  259   ratio:  49 =  7^2
49           x: -1    y: 4   z:  7   ratio:  49 =  7^2
49           x: -23    y: -10   z:  133   ratio:  49 =  7^2
49           x: 24    y: 71   z:  455   ratio:  49 =  7^2
49           x: -29    y: 165   z:  364   ratio:  49 =  7^2
49           x: -3    y: -1   z:  14   ratio:  49 =  7^2
49           x: -51    y: -38   z:  49   ratio:  49 =  7^2
49           x: -5    y: -2   z:  7   ratio:  49 =  7^2
57           x: -343    y: -221   z:  342   ratio:  57 =  3 19
63           x: -22    y: -17   z:  21   ratio:  63 =  3^2 7
67           x: -17    y: 160   z:  469   ratio:  67 =  67
72           x: 1    y: 2   z:  18   ratio:  72 =  2^3 3^2
72           x: -89    y: 164   z:  126   ratio:  72 =  2^3 3^2
79           x: -83    y: -66   z:  79   ratio:  79 =  79
81           x: -22    y: -5   z:  63   ratio:  81 =  3^4
96           x: 1    y: 5   z:  36   ratio:  96 =  2^5 3
97           x: -102    y: -83   z:  97   ratio:  97 =  97
98           x: -1    y: 9   z:  28   ratio:  98 =  2 7^2
108           x: -5    y: -1   z:  18   ratio:  108 =  2^2 3^3
112           x: 1    y: 3   z:  28   ratio:  112 =  2^4 7
117           x: -41    y: -34   z:  39   ratio:  117 =  3^2 13
119           x: -11    y: -6   z:  119   ratio:  119 =  7 17
125           x: -18    y: -5   z:  35   ratio:  125 =  5^3
125           x: -18    y: -7   z:  25   ratio:  125 =  5^3
125           x: -7    y: -5   z:  90   ratio:  125 =  5^3
128           x: 1    y: 11   z:  72   ratio:  128 =  2^7
134           x: 7    y: 9   z:  134   ratio:  134 =  2 67
135           x: -298    y: -167   z:  315   ratio:  135 =  3^3 5
139           x: -146    y: -123   z:  139   ratio:  139 =  139
148           x: -7    y: -3   z:  74   ratio:  148 =  2^2 37
163           x: -171    y: -146   z:  163   ratio:  163 =  163
169           x: -7    y: -2   z:  13   ratio:  169 =  13^2
189           x: -22    y: -19   z:  21   ratio:  189 =  3^3 7
196           x: -5    y: -1   z:  14   ratio:  196 =  2^2 7^2
200           x: -16    y: 141   z:  490   ratio:  200 =  2^3 5^2
200           x: -3    y: 8   z:  10   ratio:  200 =  2^3 5^2
Will Jagy
  • 146,052
  • (+1)How did you manage to do it? – Soham Apr 08 '16 at 06:58
  • 1
    The ratio $-2u^2$ is always possible: take e.g. $x=-1-16u+16u^2$, $y=-16u^2-16u+1$, $z=2u(16u^2+3)$. With the ratio T, we get the elliptic curve $Y^2 = X^3+(-54T+4T^2)X^2+(972T^2-288T^3)X-5832T^3+3456T^4-512T^5$, and if its rank is positive, we get infinitely many solutions. – duje Apr 08 '16 at 07:11
  • 1
    @duje thanks. I put in a search with ratios between $-200$ and $200$ at the end. Shows $(-1,1,2u)$ also gives $-2u^2.$ – Will Jagy Apr 08 '16 at 18:04