1

Given C*-algebras $\mathcal{A}$ and $\mathcal{B}$.
(Both possibly nonunital!)

Linear Map: $$\varphi:\mathcal{A}\to\mathcal{B}:\quad\varphi\in\mathcal{L}$$

Implication: $$\varphi\geq0\implies\|\varphi\|<\infty$$ (Reduction?)

Reference: Boundedness

freishahiri
  • 17,045

1 Answers1

1

If $\|\varphi(A)\|\leq c\,\|A\|$ when $A$ is selfadjoint, then for arbitrary $A$ you have $$ \|\varphi(A)\|=\|\varphi(\text{Re}\,A)+i\varphi(\text{Im}\,A)\| \leq\|\varphi(\text{Re}\,A)\|+\|\varphi(\text{Im}\,A)\|\\ \leq c\,(\|\text{Re}\,A\|+\|\text{Im}\,A)\|\leq 2c\|A\|, $$ since $$ \|\text{Re}A\|=\frac12\,\|A+A^*\|\leq\frac12\,(\|A\|+\|A^*\|)=\|A\|. $$

Martin Argerami
  • 217,281