Let $A,B$ be $n$-th dimensional complex Hermitian matrices, and suppose that $e^{-iA} = e^{-iB}$. Does this necessarily imply that $A = B$?
If we expand the expression, then then $$ I + iA - \frac{A^2}{2} - i\frac{A^3}{3!}+\ldots = I + iB - \frac{B^2}{2} -i\frac{B^3}{3!}+\ldots $$ but how can this imply $A = B$?