Let $A = \mathbb{Z}[\sqrt{-2}]= \{a+b\sqrt{-2} \ : a, b \in \mathbb{Z}\}$. Show that if $x, y \in \mathbb{N}$ such that $x^2+ 2 = y^3$, then $x+\sqrt{-2}$ and $x-\sqrt{-2}$ are coprime.
I think we can proceed in using the norm $N(a+b\sqrt{-2})=a^2+2b^2$. So far I know that $y^3=(x+\sqrt{-2}\,)(x-\sqrt{-2}\,)$ and $\Bbb Z[\sqrt{-2}\,]$ has a unique factorization.
Defintion : $d=\gcd(a,b)$ if $(i)$ $d | a$ and $d|b$ and $(ii)$ if $e|a$ and $e|b$, then $e|d$.
Is there a faster way to do this question instead of using the definition? Otherwise, how could I do this question in using the definition?