Let $n,k \in \mathbb{N}$ and $x_1, \dots, x_k \in S_n$, symmetric group. Is there an efficient algorithm to determine the $$ \text{order of }\langle x_1, \dots, x_k\rangle\text{?} $$
If necessary, you can assume that $\langle x_1\rangle, \dots, \langle x_k \rangle$ have pairwise trivial intersection. Indeed, you can assume whatever you think is needed, but of course the fewer assumptions, the better.
Subquestion
GAP can calculate the order of this group:
$$\begin{align*}
\langle
&(1\ 2\ 3\ 4)(5\ 6\ 7\ 8)(12\ 25\ 42\ 19)(15\ 32\ 45\ 22)(11\ 28\ 41\ 18),\\
&(9\ 10\ 11\ 12)(13\ 14\ 15\ 16)(34\ 26\ 2\ 18)(37\ 29\ 5\ 21)(33\ 25\ 1\ 17),\\
&(17\ 18\ 19\ 20)(21\ 22\ 23\ 24)(9\ 1\ 41\ 35)(16\ 8\ 48\ 38)(12\ 4\ 44\ 34),\\
&(25\ 26\ 27\ 28)(29\ 30\ 31\ 32)(11\ 33\ 43\ 3)(14\ 40\ 46\ 6)(10\ 36\ 42\ 2),\\
&(33\ 34\ 35\ 36)(37\ 38\ 39\ 40)(10\ 17\ 44\ 27)(13\ 24\ 47\ 30)(9\ 20\ 43\ 26),\\
&(41\ 42\ 43\ 44)(45\ 46\ 47\ 48)(4\ 28\ 36\ 20)(7\ 31\ 39\ 23)(3\ 27\ 35\ 19)
\rangle
\end{align*}$$
It is $43\,252\,003\,274\,489\,856\,000$. How does it do that?
Any resemblance to real cubes, living or dead, is purely coincidental ;)