I try to prove that theorem.
Let $a,b\in\mathbb N$, $\gcd(a,b)=1$. Then there exist isomorphism between the rings $\mathbb Z_{a} \times \mathbb Z_{b}$ and $\mathbb Z_{ab}$.
My proof:
Let $f:\mathbb Z_{ab} \to \mathbb Z_{a} \times \mathbb Z_{b}$, $x\to (x \bmod a; x \bmod b)$. Then $f$ is a bijection because of Chinese theorem. Prove that $f$ is homomorphism: $f(x)$+$f(y)$=(x mod a; x mod b) + (y mod a; y mod b)=(x+y mod a; x+y mod b)= $f$(x+y mod ab) for x,y elements $\mathbb Z_{ab}$. So $f$ is homomorphism because of definition of homomorphism between rings so finally $\mathbb Z_{ab} $, $ \mathbb Z_{a} \times \mathbb Z_{b}$ are isomorphic.
Do you think it is correct ?