I like to find the following limit:
$\lim\limits_{n\to\infty}\sin^2(\pi\sqrt{ n^2+n})$.
Any ideas or insight would be greatly appreciated.
I like to find the following limit:
$\lim\limits_{n\to\infty}\sin^2(\pi\sqrt{ n^2+n})$.
Any ideas or insight would be greatly appreciated.
Hint: Note that $$\sqrt{n^2+n}=\sqrt{n^2+n}-n+n=\frac{n}{\sqrt{n^2+n}+n}+n=\frac{1}{\sqrt{1+1/n}+1}+n.$$
As $n$ tends to $+\infty$, you may write $$ \begin{align} \sin^2 \left( \pi \sqrt{n^2+n}\right) &=\sin^2 \left( \pi n \:\sqrt{1+\frac1n}\right)\\\\ &=\sin^2 \left( \pi n \:\left(1+\frac1{2n}+\mathcal{O}\left(\frac{1}{n^2}\right)\right)\right)\\\\ &=\sin^2 \left( \pi n +\frac{\pi}2+\mathcal{O}\left(\frac{1}{n}\right)\right)\\\\ &=\cos^2 \left(\mathcal{O}\left(\frac{1}{n}\right)\right)\to 1. \end{align} $$