Let me describe a sketch of proof that $x=4$.
A. Observe that if $f(x)=\lim_{n\to\infty}\sqrt{1+\sqrt{x+\sqrt{x^2+\cdots\sqrt{x^n}}}}$, then $f$ is strictly increasing.
B. We shall show that $f(4)=2$, and hence $x=4$ is the unique answer.
$B_1.$ Fix $m\in\mathbb N$ and show that, for $n=m,m-1,m-2,\cdots$ (induction backwards)
$$
2^n<\sqrt{4^n+\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}}}}<2^n+1,
$$
while
$$
\sqrt{4^n+\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}+1}}}=2^n+1.
$$
$B_2.$ Next estimate the difference
$$
(2^n+1)-
\sqrt{4^n+\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}}}} \\
=\sqrt{4^n+\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}+1}}}-
\sqrt{4^n+\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}}}} \\
=\frac{\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}+1}}-
\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}}}}{\sqrt{4^n+\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}+1}}}+
\sqrt{4^n+\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}}}}} \\
<\frac{{\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}+1}}-
\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}}}}}{2\cdot 2^n} \\
<\cdots<\frac{(\sqrt{4^m}+1)-\sqrt{4^m}}{2^{m-n}\cdots 2^{n+(n+1)+\cdots+(m-1)}}=2^{-\frac{(m-n)(n+m+1)}{2}}
$$
Thus
$$
\lim_{m\to\infty}\sqrt{4^n+\sqrt{4^{n+1}+\cdots\sqrt{4^{m-1}+\sqrt{4^m}}}}=2^n+1.
$$
For $n=0$ we have
$$
\lim_{m\to\infty}\sqrt{1+\sqrt{4+\cdots\sqrt{4^{m-1}+\sqrt{4^m}}}}=2^0+1=2.
$$