Since every $4×4$ skew-symmetric matrix can be written uniquely as a decomposition
$$\begin{bmatrix} 0&-a&-b&-c \\a&0&-c&b\\b&c&0&-a\\c&-b&a&0\end{bmatrix}+\begin{bmatrix} 0&-x&-y&-z \\x&0&z&-y\\y&-z&0&x\\z&y&-x&0\end{bmatrix}$$
If $E_{ij}=e_{ij}-e_{ji}$ for $i<j$. We can find that if $I = −E_{12} −E_{34}$, $J = −E_{13} +E_{24}$, and $K = −E_{14} −E_{23}$, then $[I,J] = 2K$, $[J,K] = 2I$, and $[K, I] = 2J$.
My question is how can we deduce from what we have above that $\mathfrak {so}(4)\cong \mathfrak {so}(3)\oplus \mathfrak {so}(3) $?