Suppose $f(x)$ is a monotone increasing function defined for all $x\in \mathbb{R}$. Show that for any $x_0\in \mathbb{R}$, the one sided limits $$f^+(x_0)=\lim_{x\to x_0^+}f(x) \text{ and } f^-(x_0)=\lim_{x\to x_0^-}f(x)$$ exist and that $f^+(x_0)\geq f^-(x_0)$.
I know that the limit definition is: $\forall \epsilon>0$ $\exists \delta>0 $ such that $|f(x)-f^+(x_0)|<\epsilon$ where $|x-x_0|<\delta$.
I know that $x_0<x$, so $f(x_0)<f(x) \Rightarrow f(x)-f(x_0)>0$ $$|f(x)-f^+(x_0)|=|f(x)-f(x_0)+f(x_0)-f^+(x_0)|\leq |f(x)-f(x_0)|+|f(x_0)-f^+(x_0)|$$
But where do I go from here?
$$f(x) > f(x_{0}) \implies f(x) - f(x_{0}) > 0$$
– Matthew Cassell Feb 09 '16 at 03:15