I wish to find the inverse of $\dfrac{x}{\|x\|}$, where $x \in \mathbb{R}^2$
Let's do this.
Let $$y_1 = \dfrac{x_1}{\sqrt{x_1^2+x_2^2}}$$
$$y_2 = \dfrac{x_2}{\sqrt{x_1^2+x_2^2}}$$
Then $$y_1 = \dfrac{x_1}{\sqrt{x_1^2+x_2^2}} \Rightarrow \dfrac{x_2^2}{x_1^2} = \dfrac{1 - y_1^2}{y_1^2}$$
Similarly
$$y_2 = \dfrac{x_2}{\sqrt{x_1^2+x_2^2}} \Rightarrow \dfrac{x_2^2}{x_1^2} = \dfrac{y_2^2}{1-y_2^2}$$
It seems however we combine the above equations, the $x_1$ and the $x_2$ will both drop out. Leaving only the $y$s
How to proceed from here?