Statement
\begin{equation} \int_{\mathbb R} \exp \left( -2\pi (\frac{x}{\sqrt{2}})^2 \right) \exp\left( -i2 \pi \frac {x}{\sqrt{2}} \cdot f \right) dx = \exp \left( -\pi f^{2} / 2 \right) \end{equation}
My attempt based on J.G.'s tips
Call the integral I(f).
\begin{equation} I(f) = \int_{\mathbb R} \left( -\pi x^{2} - i \sqrt{2} \pi x f \right) dx \end{equation}
Integration by parts: $dv = dx$, $u = I(f)$, $v = x$, and $du = \delta I / \delta f$ so
\begin{equation} \int_{\mathbb R} u dv = I(f) \cdot x - \int_{\mathbb R} x \frac{\delta I}{\delta f} \end{equation}
How can you get the second power in the final result in the integration?