I will provide a complete proof.
Assumptions
- $\mathbf{l}^T \mathbf{x} = 0$, for all 2d points $\mathbf{x} \in \mathbb{R}^3$ represented in homogenous coordinates that belong to $\mathbf{l}^T \in \mathbb{R}^3$ (i.e. a homogenous representation of a line, in a plane).
- Similarly, $\mathbf{l}'^T \mathbf{x}' = 0$, for all points $\mathbf{x}' \in \mathbb{R}^3$ that lie on the other line $\mathbf{l}' \in \mathbb{R}^3$ (i.e. a homogenous representation of a line, in another plane).
- $\mathbf{x}' = \mathbf{H} \mathbf{x}$, for some homography $\mathbf{H} \in \mathbb{R}^{3 \times 3}$.
Theorem
We want to prove that $\mathbf{l} = \mathbf{H}^T \mathbf{l}'.$
Proof
We can combine 3 with 2 to obtain
\begin{align}
\mathbf{l}'^T \mathbf{x}' &= 0 \iff \\
\mathbf{l}'^T \left(\mathbf{H} \mathbf{x} \right)&= 0
\end{align}
Given that matrix multiplication is associative, we don't need the parentheses
\begin{align}
\mathbf{l}'^T \mathbf{H} \mathbf{x} = 0 \label{1}\tag{1}
\end{align}
Now, note that $\mathbf{l}'^T \mathbf{H} = (\mathbf{H}^T \mathbf{l}')^T$, then \ref{1} becomes
\begin{align}
(\mathbf{H}^T \mathbf{l}')^T \mathbf{x} = 0
\end{align}
Now, we know that $\mathbf{l}^T \mathbf{x} = 0$, so
\begin{align}
(\mathbf{H}^T \mathbf{l}')^T \mathbf{x} &= \mathbf{l}^T \mathbf{x} \iff \\
(\mathbf{H}^T \mathbf{l}')^T &= \mathbf{l}^T \iff \\
\mathbf{H}^T \mathbf{l}' &= \mathbf{l}
\end{align}
Note that this equality holds up to scale (because we are working in projective space).
Some context: There are two images $I$ and $I^{'}$. A line $l^{'}_i$ in the second image is projected into the first image as line $l_i$ with the homography matrix $H$. The homography matrix can also relate a corresponding point pair $x$ and $x^{'}$ in the images $I$ and $I^{'}$.
– Matthias Preu Feb 01 '16 at 12:07