We first prove that for $|x|\leq n$ we then have
$$\cos\left(\frac xn\right)^{n^2} \leq e^{-\frac{x^2}2}.$$
This inequality is equivalent to
$$\ln \cos\left(\frac xn\right) + \frac{x^2}{2 n^2} \leq 0,\quad \forall x\in [-n,n]. \quad\quad\quad\quad (1)$$
It is enough to prove $(1)$ for $x\in [0,n]$. Let $t = x/n \in [0,1]$, and set $f(t) = \ln\cos t + t^2/2$. We have $f(0) = 0$ and
$$f'(t) = -\frac{sin t - t \cos t}{\cos t} \leq 0,$$
since $\sin t - t\cos t \geq 0$ for $t\in [0,\pi/2]$. Since $1 < \pi/2$, then for any $t\in [0,1]$ we have $f(t) \leq f(0) =0$. Hence $(1)$ holds.
Using L'Hopital rule, we easily verify that
$$\lim_{t\to 0} \frac{\ln \cos t}{t^2} = -\frac12.$$
Hence for any $x \in \mathbf{R}$, we have
$$\lim_{n\to \infty} \cos\left(\frac xn\right)^{n^2} = e^{-\frac{x^2}2}.$$
Denoted $f_n(x) = \cos\left(\frac xn\right)^{n^2} \chi_{[-n,n]}(x)$ then we have $f_n(x) \leq e^{-x^2/2}$ for any $x$ and $\lim_{n\to\infty} f_n(x) = e^{-x^2/2}$ for any $x$. From the Lebesgue dominated convergence theorem, we have
$$\lim_{n\to\infty} \int_{-n}^n \cos\left(\frac xn\right)^{n^2} dx = \lim_{n\to \infty} \int_{\mathbf{R}} f_n(x) dx = \int_{\mathbf{R}} e^{-x^2/2} dx = \sqrt{2\pi}.$$