Can you help me?
If $f$ and $f'$ are continuous at $[a,b]$ (where $a,b\mathbb{\in R}$), then $\forall\epsilon>0$ exists a polynomial $p$ such that $\left\Vert f-p\right\Vert _{\infty}\leq\epsilon$ and $\left\Vert f'-p'\right\Vert _{\infty}\leq\epsilon$.