How to evaluate $$\displaystyle\int \sin^3(x) \,\operatorname{d}x$$ without using integration by parts?
Asked
Active
Viewed 109 times
4 Answers
2
Hint:
$$\int \sin^3(x) \,\operatorname{d}x=\int \left[\sin(x)\right]\left[1-\cos^2(x)\right] \,\operatorname{d}x$$
Then, use the substitution, $t=\cos(x)$.
Vincent
- 168
Emilio Novati
- 64,377
-
Alternatively you could multiply out the terms in the integral and note that $-\sin x \cos^2 x = 1/3 d/dx ( \cos^3 x )$ and then use the FTC for that part of the integral. – okrzysik Dec 31 '15 at 10:07
1
Hint. You may just write $$ \sin^3 x=\sin x \times \sin^2 x=\sin x \times (1- \cos^2 x). $$
Olivier Oloa
- 122,789
0
Let $t:=\cos x$ $$\implies \int\sin^3x dx=\int (t^2-1)dt=t^3/3-t+c=\frac13\cos^3x-\cos x+c.$$
callculus42
- 31,012
RE60K
- 18,045