Evaluation of $$\lim_{n\rightarrow \infty}\sum^{n}_{r=1}\frac{r}{n^2+n+r}$$
$\bf{My\; Try:}$ Let $$L = \lim_{n\rightarrow \infty}\sum^{n}_{r=1}\frac{r}{n^2+n+r} = \lim_{n\rightarrow \infty}\sum^{n}_{r=1}\frac{\frac{r}{n}}{\frac{r^2}{n^2}+\frac{1}{n}+\frac{r}{n^2}}\cdot \frac{1}{n}$$
I want to convert into Riemann integral, But it is not possible here.
So how can I solve it?
Help me!
Thanks