7

Evaluation of $$\lim_{n\rightarrow \infty}\sum^{n}_{r=1}\frac{r}{n^2+n+r}$$

$\bf{My\; Try:}$ Let $$L = \lim_{n\rightarrow \infty}\sum^{n}_{r=1}\frac{r}{n^2+n+r} = \lim_{n\rightarrow \infty}\sum^{n}_{r=1}\frac{\frac{r}{n}}{\frac{r^2}{n^2}+\frac{1}{n}+\frac{r}{n^2}}\cdot \frac{1}{n}$$

I want to convert into Riemann integral, But it is not possible here.

So how can I solve it?

Help me!

Thanks

user
  • 162,563
juantheron
  • 56,203
  • No i Think It must g o to $0$ – juantheron Dec 22 '15 at 07:56
  • Can you see that it's less than $\frac{n^2}{n^2+n+r}$? for all $n$? – Gregory Grant Dec 22 '15 at 08:04
  • 1
    If you plug in $n=\infty$ its just 0 as $1/n=1/\infty=0$ – Archis Welankar Dec 22 '15 at 08:10
  • I saw a lot of wrong answers. First $\lim_{n\rightarrow \infty}\sum^{n}{r=1}\frac{r}{n^2+n+r} = \sum^{n}{r=1}\lim_{n\rightarrow \infty}\frac{r}{n^2+n+r}$ so calculate each term and sum but $0 < r \leq n$ so $\frac{r}{n^2+n+r}$ is non negative and $\lim_{n\rightarrow \infty}\frac{r}{n^2+n+r}\leq\lim_{n\rightarrow \infty}\frac{n}{n^2+2n} = 0$, so each term is zero (can't be greater or lower). – RHER WOLF Oct 15 '24 at 21:06

3 Answers3

13

$$\frac{r}{(n+1)^2}\leq\frac{r}{n^2+n+r}\leq\frac{r}{n^2}$$ hence your limit equals $\int_{0}^{1}x\,dx = \color{red}{\frac{1}{2}}$.

You may also avoid Riemann sums by just noticing that $\sum_{r=1}^{n} r = \frac{n^2+n}{2}$.

Jack D'Aurizio
  • 361,689
5

Besides Jack's neat answer, a different approach giving more than the desired limit.

One may rewrite your sum with the standard harmonic numbers $$ \begin{align} \sum^{n}_{r=1}\frac{r}{n^2+n+r}&=\sum^{n}_{r=1}\frac{n^2+n+r-(n^2+n)}{n^2+n+r}\\\\&=n-(n^2+n)\sum^{n}_{r=1}\frac1{n^2+n+r}\\\\ &=n-(n^2+n)\left(H_{n^2+2n}- H_{n^2+n}\right) \end{align} $$ then use the asymptotics of harmonic numbers, as $ N \to \infty$, $$ H_N=\log N+\gamma+\frac1{2N}-\frac1{12N^2}+\mathcal{O}\left(\frac1{N^4} \right) $$ leading readily to

$$ \sum^{n}_{r=1}\frac{r}{n^2+n+r}=\frac12-\frac1{3n}+\mathcal{O}\left(\frac1{n^2} \right) $$

as $n \to \infty$.

Riemann
  • 11,801
Olivier Oloa
  • 122,789
2

As an alternative, we have

$$\frac{r}{n^2+n+r}=\frac{r}{n^2+n}-\frac{r^2}{(n^2+n)(n^2+n+r)}$$

therefore

$$\sum^{n}_{r=1}\frac{r}{n^2+n+r}=\sum^{n}_{r=1}\frac{r}{n^2+n}-\sum^{n}_{r=1}\frac{r^2}{(n^2+n)(n^2+n+r)}=\frac12+O\left(\frac1n\right)\to\frac12$$

user
  • 162,563