A formal natural deduction proof (equivalent to Kevin Quirin's) looks like this: (I've treated $\lnot a$ and $a\to\bot$ as interchangeable.)
\begin{array}{lll}
1& \text{Assume $(\lnot\lnot p\to p)\to\bot$}\\
2a& \quad\text{Assume $p$}\\
2b& \quad \lnot\lnot p\to p & \text{$2a$, $K$} \\
2c& \quad \bot & \text{$1, 2b$, mp} \\
3& \lnot p & \text{$2a$–$2c$, $\lnot$-introduction} \\
4a& \quad\text{Assume $\lnot p\to \bot$}\\
4b& \quad \bot & \text{$3, 4a$, mp} \\
4c& \quad p & \text{$\bot$-elimination} \\
5& (\lnot p\to \bot)\to p & \text{$4a$–$4c$} \\
5'& \lnot\lnot p\to p & \text{(definition)} \\
6& \bot & \text{$1, 5'$, mp} \\ \hline
7& ((\lnot\lnot p\to p)\to\bot)\to\bot & \text{$1$–$6$} \\
7'& \lnot\lnot(\lnot\lnot p\to p)& \text{(definition)} \\
\end{array}
A little explanation of step $2b$ might be needed here because I used a not-quite-elementary deduction rule I've labeled '$K$'. The principle is just that if we have already deduced $a$ then we can deduce $b\to a$ for any $b$, simply by
\begin{array}{lll}
&\vdots \\
1& a & \text{previous deduction} \\
2a& \quad\text{Assume b} \\
2b& \quad a & \text{$1$} \\
3 & b\to a & \text {$2a$–$2b$} \\
\end{array}
This is the deduction that Kevin Quirin described as “clearly true”. In $\lambda$ calculus it corresponds to taking $a$ and constructing the constant function $K a = \lambda b. a$.
The $\lambda$-calculus term corresponding to the proof is
$$ λf. f(λq. q(λp. f(λq. p))))$$
where $p$ has type $p$, $q$ has type $\lnot\lnot p$, and $f$ has type $(q\to p)\to\bot$. The innermost $\lambda q.p$ corresponds to the $K$ step.