$$\lim\limits_{x\to\infty}x(\frac{\pi}{2}-\arctan(x))$$
I want to evaluate the limit without using L'Hôpitals Rule
related :
How to evaluate the following limit? $\lim\limits_{x\to\infty}x\left(\frac\pi2-\arctan x\right).$
$$\lim\limits_{x\to\infty}x(\frac{\pi}{2}-\arctan(x))$$
I want to evaluate the limit without using L'Hôpitals Rule
related :
How to evaluate the following limit? $\lim\limits_{x\to\infty}x\left(\frac\pi2-\arctan x\right).$
$$ x (\pi/2 - \arctan x) = x \arctan\frac 1 x = \frac{\arctan(1/x)}{1/x}\to 1 $$ as $x\to +\infty$.
added.
Notice that $$ \frac{\arctan y }{y} = \frac{\arctan y}{\tan (\arctan y)} = \frac{\arctan y}{\sin (\arctan y)} \cos(\arctan y) \to 1 $$ as $y\to 0$.
$\dfrac\pi2-\arctan x=y\implies x=\cot y$
As $x\to\infty,\dfrac\pi2-y\to\dfrac\pi2\iff y\to0$
$$\lim_{x\to\infty}x\left(\dfrac\pi2-\arctan x\right)=\lim_{y\to0}\dfrac y{\sin y}\cdot\lim_{y\to0}\cos y=?$$
$$\lim_{x\rightarrow \infty }x\left ( \frac{\pi}{2}-\operatorname{arctg}x \right )=\lim_{x\rightarrow \infty }\frac{\frac{\pi}{2}-\operatorname{arctg}x}{1/x}=\lim_{x\rightarrow \infty }\frac{x^2}{x^2+1}=\lim_{x\rightarrow \infty }\frac{1}{1+\frac{1}{x^2}}=1$$