Problem: Let $H,K,N$ be subgroups of a group $G$ such that $H\leq K$, $H\cap N=K\cap N$ and $HN=KN$. Show that $H=K$.
Here is my attempt: $H=K\Leftrightarrow$ $H\subseteq K$ and $K\subseteq H$.
Clearly, $H\subseteq K$ as $H\leq K$. To show $K\subseteq H$;
$HN=KN\Rightarrow k=hn$ where $k\in K, h\in H$ and $n\in N$, so $K\subseteq HN$. $$\color{blue}{If\ N\subseteq H,\ then\ K\subseteq HN \Rightarrow K\subseteq H.}$$ Hence the proof completes!
Even though it is clear that $N\subseteq H$ (intuitively) I don't know how to prove it rigorously. Or is my argument invalid at all(Is there another way to approach the problem)?