Let $R_{\theta}$ be a rotation of $S^2$ by an angle of $\theta$ around $x_1$-axis where $S^2=\{(x_1,x_2,x_3)\in \mathbb{R}^3: \sum_{i=1}^{3}x_i^2=1\}$
How can we write the corresponding mobius transformation of $\mathbb{P}^1$ ?
Let $R_{\theta}$ be a rotation of $S^2$ by an angle of $\theta$ around $x_1$-axis where $S^2=\{(x_1,x_2,x_3)\in \mathbb{R}^3: \sum_{i=1}^{3}x_i^2=1\}$
How can we write the corresponding mobius transformation of $\mathbb{P}^1$ ?