$\bf{My\; Try:}$ Let $$\displaystyle I = \int_{0}^{\infty}\frac{x\ln x}{(1+x^2)^2}\,dx = \underbrace{\int_{0}^{1}\frac{x\ln x}{(1+x^2)^2}\,dx}_{I_{1}}+\underbrace{\int_{1}^{\infty}\frac{x\ln x}{(1+x^2)^2}\,dx}_{I_{2}}.$$
Now Here $$\displaystyle I_{2} = \int_{1}^{\infty}\frac{x\ln x}{(1+x^2)^2}\,dx.$$ Put $\displaystyle x=\frac{1}{t}.$ Then $\displaystyle dx = -\frac{1}{t^2}dt$ and changing limit
We get $$\displaystyle I_{2} = \int_{1}^{0}\frac{-t^3\cdot \ln t}{(1+t^2)^2}\cdot -\frac{1}{t^2}\,dt = \int_{1}^{0}\frac{t\ln t}{(1+t^2)^2}\,dt = -\int_{0}^{1}\frac{t\ln t}{(1+t^2)^2}\,dt$$
So we get $$\displaystyle I_{2} = -\int_{0}^{1}\frac{x\ln x}{(1+x^2)^2}dt = -I_{1}\Rightarrow I_{1}+I_{2} = 0$$
So we get $$\displaystyle I = \int_{0}^{\infty}\frac{x\ln x}{(1+x^2)^2}dx = I_{1}+I_{2} =0$$
My question is, can we solve it using another method? If so then please explain.