Consider the set $\ell^2$ that contains all sequences of real numbers $(a_n)$ such that $$\sum_{n=1}^\infty|a_n|^2<\infty.$$
For two sequences $x=(a_n)$ and $y=(b_n)$ in $\ell^2$, define $$d(x,y)=\left(\sum_{n=1}^\infty|a_n-b_n|^2\right)^\frac12.$$
Prove:
(a) $(X,d)$ is a metric space.
(b) $(X,d)$ is complete.
So far this is what I've done:
(a)
(i) $d(x,y)\geq0$ obviously, and $d(x,y)=0$ iff $a_n=b_n\Rightarrow x=y$.
(ii) $d(x,y)=\left(\sum_{n=1}^\infty|a_n-b_n|^2\right)^\frac12=\left(\sum_{n=1}^\infty|b_n-a_n|^2\right)^\frac12=d(y,x)$.
(iii) Let $z=(c_n)$. We will show that $d(x,z)\leq d(x,y)+d(y,z)$
Equivalently, $$\left(\sum_{n=1}^\infty|a_n-c_n|^2\right)^\frac12\leq \left(\sum_{n=1}^\infty|a_n-b_n|^2\right)^\frac12+\left(\sum_{n=1}^\infty|b_n-c_n|^2\right)^\frac12.$$
I start by seeing that $$\left(\sum_{n=1}^\infty|a_n-b_n|^2\right)^\frac12\leq \left(\sum_{n=1}^\infty\left(|a_n-b_n|+|b_n-c_n|\right)^2\right)^\frac12.$$
And squaring gives: $$\left(\sum_{n=1}^\infty\left(|a_n-b_n|^2+|b_n-c_n|^2+2|a_n-b_n||b_n-c_n|\right)\right)^\frac12$$
Splitting the sum: $$\left(\sum_{n=1}^\infty\left(|a_n-b_n|^2+|b_n-c_n|^2\right)+2\sum_{n=1}^\infty\left(|a_n-b_n||b_n-c_n|\right)\right)^\frac12.$$
Not sure where to go from here, and no idea where to start on the convergence of an arbitrary Cauchy sequence in $\ell^2$, which is needed to show completeness of this metric.
\left( ... \right)(see my edit). – Silvia Ghinassi Nov 16 '15 at 19:09