Using the fact $xy \leq \frac{1}{p}x^p + \frac{1}{q}y^q$ for all $x,y >0$ and $p,q > 0$ with $\frac{1}{p} + \frac{1}{q} = 1$. How can I proof the Holder's Inequality?
$$ \sum_{i=1}^n |u_i v_i| \leq (\sum_{i=1}^n |u_i|^p )^{\frac{1}{p}}(\sum_{i=1}^n |v_i|^q )^\frac{1}{q} $$