A matrix is elementary if it differs from the identity matrix by a single elementary row or column operation.
See for example, Wolfram MathWorld Elementary Matrix
The Gauss-Jordan reduction process is expressed as a sequence of elementary operations:
$$
%
\left[
\begin{array}{c|c}
\mathbf{A} & \mathbf{I}
\end{array}
\right]
%
\qquad \Rightarrow \qquad
%
\left[
\begin{array}{c|c}
\mathbf{E_{A}} & \mathbf{R}
\end{array}
\right]
$$
First form the augmented matrix
$$
\left[
\begin{array}{c|c}
\mathbf{A} & \mathbf{I}
\end{array}
\right]
=
\left[
\begin{array}{cc|cc}
2 & 4 & 1 & 0 \\
1 & 1 & 0 & 1 \\
\end{array}
\right]
$$
Normalize row 1:
$$
\left[
\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1 \\
\end{array}
\right]
%
\left[
\begin{array}{cc|cc}
2 & 4 & 1 & 0 \\
1 & 1 & 0 & 1 \\
\end{array}
\right]
=
\left[
\begin{array}{cc|cc}
1 & 2 & \frac{1}{2} & 0 \\
1 & 1 & 0 & 1 \\
\end{array}
\right]
$$
Clear column 1
$$
\left[
\begin{array}{rc}
1 & 0 \\
-1 & 1 \\
\end{array}
\right]
%
\left[
\begin{array}{cc|cc}
1 & 2 & \frac{1}{2} & 0 \\
1 & 1 & 0 & 1 \\
\end{array}
\right]
=
\left[
\begin{array}{cr|rc}
1 & 2 & \frac{1}{2} & 0 \\
0 & -1 & -\frac{1}{2} & 1 \\
\end{array}
\right]
$$
Normalize row 2
$$
\left[
\begin{array}{cr}
1 & 0 \\
0 & -1 \\
\end{array}
\right]
%
\left[
\begin{array}{cc|cr}
1 & 2 & \frac{1}{2} & 0 \\
0 & 1 & \frac{1}{2} & -1 \\
\end{array}
\right]
=
\left[
\begin{array}{cc|cr}
1 & 2 & \frac{1}{2} & 0 \\
0 & 1 & \frac{1}{2} & -1 \\
\end{array}
\right]
$$
Clear column 2
$$
\left[
\begin{array}{cr}
1 & -2 \\
0 & 1 \\
\end{array}
\right]
%
\left[
\begin{array}{cc|cr}
1 & 2 & \frac{1}{2} & 0 \\
0 & 1 & \frac{1}{2} & -1 \\
\end{array}
\right]
=
\left[
\begin{array}{cc|rr}
1 & 0 & -\frac{1}{2} & 2 \\
0 & 1 & \frac{1}{2} & -1 \\
\end{array}
\right]
$$
## Products of the elementary matrices
$$
%
\begin{align}
%
\mathbf{E}_{4} \, \mathbf{E}_{3} \, \mathbf{E}_{2} \, \mathbf{E}_{1} \mathbf{A} &= \mathbf{I}_{2} \\[3pt]
%
% four
\left[
\begin{array}{cr}
1 & -2 \\
0 & 1 \\
\end{array}
\right]
% third
\left[
\begin{array}{cr}
1 & 0 \\
0 & -1 \\
\end{array}
\right]
% second
\left[
\begin{array}{rc}
1 & 0 \\
-1 & 1 \\
\end{array}
\right]
% first
\left[
\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1 \\
\end{array}
\right]
% A
\left[
\begin{array}{cc|cc}
2 & 4 \\
1 & 1 \\
\end{array}
\right]
&=
\left[
\begin{array}{rr}
1 & 0 \\
0 & 1 \\
\end{array}
\right]
%
\end{align}
%
$$
$$
%
\begin{align}
%
\mathbf{E}_{4} \, \mathbf{E}_{3} \, \mathbf{E}_{2} \, \mathbf{E}_{1} \mathbf{I}_{2} &= \mathbf{A}^{-1} \\[3pt]
%
% four
\left[
\begin{array}{cr}
1 & -2 \\
0 & 1 \\
\end{array}
\right]
% third
\left[
\begin{array}{cr}
1 & 0 \\
0 & -1 \\
\end{array}
\right]
% second
\left[
\begin{array}{rc}
1 & 0 \\
-1 & 1 \\
\end{array}
\right]
% first
\left[
\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1 \\
\end{array}
\right]
\left[
\begin{array}{rr}
1 & 0 \\
0 & 1 \\
\end{array}
\right]
&=
\left[
\begin{array}{rr}
-\frac{1}{2} & 2 \\
\frac{1}{2} & -1 \\
\end{array}
\right]
%
\end{align}
%
$$