You can use the sine addition formula and get
$$\sin w \cos xw = {1 \over 2}\sin(w + xw) + {1 \over 2}\sin(w - xw)$$
Hence your integral is equal to
$${1 \over 2} \int_0^{\infty} {\sin (1 + x)w \over w} \, dw+ {1 \over 2} \int_0^{\infty} {\sin (1 - x)w \over w}\, dw $$
Substituting $u= (1 + x)w$ in the first and $u = (1 - x) w$ in the second gives (when $x \neq 1$ or $-1$)
$${1 \over 2} sgn(1 + x)\int_0^{\infty} {\sin u \over u} \, du + {1 \over 2}sgn(1 - x) \int_0^{\infty} {\sin u \over u} \,du$$
$$= sgn(1 + x){\pi \over 4} + sgn(1 - x){\pi \over 4}$$
So when $|x| > 1$, the integral is zero, and when $|x| < 1$, the integral is ${\displaystyle {\pi \over 2}}$. The cases $x = \pm 1$ can be done directly: Here the integral is
$${1 \over 2} \int_0^{\infty} {\sin 2w \over w} \, dw$$
Letting $u = 2w$ gives ${\displaystyle {\pi \over 4}}$ for these two cases.
Those familar with Fourier analysis might recognize these formulas, but the above shows them directly.