I am currently reading up about norm topology, I have a background in functional analysis but I do not know anything about topology, aside from that topology is a collection of open sets with some properties on a set.
For example:
The norm topology or uniform topology or uniform operator topology is defined by the usual norm $\|x\|$ on $B(H)$. It is stronger than all the other topologies below.
What does it mean for a norm to "define" a topology? A norm is a function which measures distance, a topology is a collection of open sets, what is the intersection between these two concepts?
Can someone who is conversant in both fields please elaborate on what it means for an algebra of bounded linear operators to have a topology, specifically what a norm topology is about?