-3

How do you evaluate the integral $$\int_{0}^{\frac{\pi}{2}} \log(\sin x)\ dx\ \text{?}$$

pjs36
  • 18,400

2 Answers2

2

HINT: notice we have $$I=\int_{0}^{\pi/2}\log(\sin x)\ dx\tag 1$$ Using property of definite integral, we get
$$I=\int_{0}^{\pi/2}\log\left(\sin\left(\frac{\pi}{2}-x\right) \right)\ dx$$ $$I=\int_{0}^{\pi/2}\log\left(\cos x\right)\ dx\tag 2$$ Adding (1) & (2), we get $$I+I=\int_{0}^{\pi/2}\log\left(\sin x\cos x\right)\ dx$$ $$2I=\int_{0}^{\pi/2}\log\left(\frac{2\sin x\cos x}{2}\right)\ dx$$ $$2I=\int_{0}^{\pi/2}\log\left(\sin 2x\right)\ dx-\int_{0}^{\pi/2}\log(2)\ dx$$ Hopefully, You can solve further

2

Hint

Show that $$\int_0^{\pi/2}\ln(\sin(x))dx=\int_0^{\pi/2}\ln(\cos(x))dx.$$

Then $$\int_0^{\pi/2}\ln(\sin(x))dx=\frac{1}{2}\left(\int_0^{\pi/2}\ln(\sin(x))dx+\int_0^{\pi/2}\ln(\cos(x))dx\right)=\frac{1}{2}\int_0^{\pi/2}\ln\left(\frac{\sin(2x)}{2}\right)dx\underset{u=2x}{=}\frac{1}{4}\int_0^{\pi}\ln(\sin(u))du-\frac{\pi\ln 2}{4}=...$$

Surb
  • 57,262
  • 11
  • 68
  • 119