I have this question with a given clue I cannot decipher in Functional Analysis stating:
Define the infinite matrix $ A = [a_{ij}]_{i,j=1}^{\infty} $ using a sequence $ \{ \alpha_n \}_{n=-\infty}^{\infty} $ such that $ a_{i,j} = \alpha_{i-j} $ and also we know $ 0 < \sum_{n=-\infty}^{\infty}{|\alpha_n|} < \infty $.
a. We need to show the matrix A defines a bounded operator on the space of sequences $ \mathcal{l}^2 $ and to find it's operator norm
b. Then we need to check if this operator is compact or not
Hint : Try to think of A as the matrix representing an operator acting on a subspace of $ L^2[-\pi,\pi] $
Now I think I know how A acts on a sequence $ \{x_j\}_{j=1}^{\infty} \in \mathcal{l}^2 $ we have a sequence $ \{y_i\}_{i=1}^{\infty} $ defined by $ y_i = \sum_{j=1}^{\infty} a_{ij}x_j $
In order to show the operator is bounded I need to look at a general sequence of $ \mathcal{l}^2 $ norm of value 1 and then check indeed that its image under A is an $ \mathcal{l}^2 $ sequence of bounded finite constant norm, and find this norm of operator A, and in the second part I need to check if closure of image of unit ball in $ \mathcal{l}^2 $ is compact in $ \mathcal{l}^2 $. All this I know in theory but I cannot do it practically as the clue I just cannot understand although I think it has something to do with Fourier coefficients, although I am not sure. Could someone guide me to solve both parts please? Thanks
SIGNIFICANT PROGRESS: I figured using idea of representation matrix that we could get $ \sum_j <Te_j,e_i><x,e_j> = <Tx,e_i> $ so under standard complex exponential basis $ e^{ik} $ ; $ k \in \mathcal{Z} $ and the product operator by g(x) we have that the entries of the matrix are $ a_ij = <Te_j,e_i>= <g(x)e_j,e_i> = 1/{2\pi}\int_{-\pi}^{\pi} g(x)e^{-(i-j)x}$ which is i-j complex Fourier coefficient of g(x) so if we know there is a g(x) whose Fourier coefficients are exactly $ \alpha $ then the representation matrix of product with g is exactly A so now using the representation matrix meaning each member of the result sequence y is the sum of products of a row of the A matrix with each member of x sequence and the result is the sequence of Fourier coefficients of product with g(x). I made this progress thanks to random123's comment but I still cannot get further help please I really need the help to continue, thanks.