$\{X \in B\} \Delta \{Y \in B\} \subset \{X \ne Y\}$ was shown here.
How do I show the contrapositive (directly) ?
The contrapositive: $(\{X \in B\} \cap \{Y \in B\}) \cup (\{X \notin B\} \cap \{Y \notin B\}) \supset \{X = Y\}$
WOLOG: If $\omega \in \{\omega | X = Y\}$ and $\omega \in \{\omega | X \in B\}$, how can I say $Y \in B$?
This seems too simple to be right.
$\omega \in \{\omega | X(\omega) = Y(\omega)\}$ and $\omega \in \{\omega | X(\omega) \in B\}$
$\to \omega \in \{\omega | X(\omega) = Y(\omega)\} \cap \{\omega | X(\omega) \in B\}$
$\to \omega \in \{\omega | X(\omega) = Y(\omega) \cap X(\omega) \in B\}$
$\to \omega \in \{\omega | Y(\omega) \in B\}$...allowed because $X(\omega), Y(\omega) \in \mathbb{R}$ ?
Is that it? Am I missing something?