Let $f:X\rightarrow \mathbb R$ and $X^*$ is the dual of $X$.
First recall the definition of $f^*: X^*\rightarrow \mathbb R$
$f^*(u^*)=\sup\limits_{x\in X}{\{\langle u^*,x\rangle - f(x)\}}$, where $u^*\in X^*$ and $\langle .,.\rangle$ is the duality pairing in $X^*\times X$.
Then the definition for subdifferential set is:
$\partial f (x)=\{u^*\in X^*: f(z)\ge f(x)+\langle u^*,z-x\rangle\}$.
Proposition:
$f(x)+f^*(u^*)-\langle u^*,x\rangle =0\Leftrightarrow u^*\in\partial f(x)$.
Proof:
1) Let $f(x)+f^*(u^*)-\langle u^*,x\rangle =0$. From the definition $f^*(u^*)=\sup\limits_{x\in X}{\{\langle u^*,x\rangle - f(x)\}}\Rightarrow$
$0=f(x)+f^*(u^*)-\langle u^*,x\rangle \ge f(x)+\langle u^*,z\rangle -f(z)-\langle u^*,x\rangle\quad \forall z\in X$ which is $f(z)\ge f(x)+\langle u^*,z-x\rangle \quad \forall z\in X$
2) Let $u^*\in \partial f(x)$. By definition $f(z)\ge f(x)+\langle u^*,z-x\rangle\quad \forall z\in X$. Consequently $\langle u^*,x\rangle-f(x)\ge \langle u^*,z\rangle - f(z)\quad\forall z\in X$
$\Rightarrow \langle u^*,x\rangle-f(x)\ge \sup\limits_{z\in X}{\{\langle u^*,z\rangle - f(z)\}}=f^*(u^*)\quad\quad (1)$.
But from the definition of $f^*(u^*)\Rightarrow f^*(u^*)\ge \langle u^*,x\rangle-f(x)\quad\quad (2)$.
From $(1)$ and $(2)$ follows the equality.