Let $K \subset \mathbb{R}^n$ be an n-dimensional simplex. Let $e_i$ denote the $i^{th}$ standard unit vector. Define $K-K$ as follows: $$ K-K=\{x-y: x,y \in K\} $$ We know that $K=$ convex hull $\{e_1, e_2,\ldots, e_n , (0,0,0,...,0)\}$.
I am wondering if $K-K=$ convex hull of $ \{e_1,e_2,\ldots, e_n, (0,0,...,0) \} - \{e_1,e_2,\ldots, e_n, (0,0,...,0) \}$
This seems to be true for n=2 case.