If $X$ is a topological space, define ${\rm Cil}(X) = X \times I$ the cylinder over $X$, and the cone over $X$, $\operatorname{Con}(X) = \operatorname{Cil}(X)/{\sim}$ the quotient by saying that $(x_1,s_1)\sim (x_2, s_2)$ iff they're equal, or if $s_1=s_2= 1$.
The exercise asks us to prove that $\operatorname{Con}(X)$ is contractible. Modulo notation, I've found a few good answers around here about this exercise (such as this and that, etc), but there's one thing I'm not getting.
In the previous exercise, I managed to prove that ${\rm Cil}(X)$ has the same homotopy type as $X$, and I did that using $H: {\rm Cil}(X) \times I \to {\rm Cil}(X)$, $H((x,s),t) = (x,st)$. I have zero experience with quotient topologies and such, but I thought of passing $H_t = H(\cdot, t)$ to the quotient somehow, as in $\widetilde{H}: {\rm Con}(X) \times I \to {\rm Con}(X)$, $\widetilde{H}(\left[(x,s)\right],t) = \left[(x,st)\right]$.
One readily sees that $\widetilde{H}_1 = {\rm id}_{{\rm Con}(X)}$ and $\widetilde{H}_0 = c_{\left[(x,0)\right]}$, so the identity is homotopic to a constant and we're done.
I understand from the answers I linked above that it is not so immediate that $\widetilde{H}$ will be continuous, but ok, I can follow what happens there.
My specific problem is more silly: seeing why $\widetilde{H}$ defined like this is actually well-defined.
Suppose that $(x_1,s_1)\sim (x_2,s_2)$. If they're equal, then $H((x_1,s_1),t) = H((x_2,s_2),t)$, ok. If they're not equal, then $s_1 = s_2 = 1$, and I'd have to check that $\left[(x_1,t)\right] = \left[(x_2,t)\right]$, but there's no reason for this to be true.
Can someone break this down for me? Thanks.