7

$$\int_{-3}^{3}\frac{x^8}{1+e^{2x}}dx$$

I can't find solution for this task, can someone help me?

Olivier Oloa
  • 122,789
salesh
  • 185

4 Answers4

30

Hint. You may write $$ \begin{align} \int_{-3}^{3}\frac{x^8}{1+e^{2x}}dx&=\int_{-3}^0\frac{x^8}{1+e^{2x}}dx+\int_0^{3}\frac{x^8}{1+e^{2x}}dx\\\\ &=\int_0^3\frac{x^8}{1+e^{-2x}}dx+\int_0^{3}\frac{x^8}{1+e^{2x}}dx\\\\ &=\int_0^3\frac{e^{2x}x^8}{1+e^{2x}}dx+\int_0^{3}\frac{x^8}{1+e^{2x}}dx\\\\ &=\int_0^3x^8dx \end{align} $$ and may conclude easily.

Olivier Oloa
  • 122,789
  • How did you change the limits in second step? Even/odd function property? – Aditya Agarwal Aug 15 '15 at 11:23
  • 1
    Wow this is fast answer, i need some help just a little bit, in second row how you can change "a" i "b" like that? + what happen in last row – salesh Aug 15 '15 at 11:24
  • @SasaCvetkovic Let me add some details, thanks! – Olivier Oloa Aug 15 '15 at 11:25
  • 3
    @SasaCvetkovic We have, using $u=-x$, $$\int_{-3}^0\frac{x^8}{1+e^{2x}}dx=\int_{3}^0\frac{(-u)^8}{1+e^{-2u}}(-du)= \int_{0}^{3}\frac{u^8}{1+e^{-2u}}du.$$ – Olivier Oloa Aug 15 '15 at 11:29
  • Then in third row you multiple and how you got four row? – salesh Aug 15 '15 at 11:35
  • @OlivierOloa and then you just sum that... now this is amazing man, do you have some literature for me because this is amazing fast, i realy had trouble with this..Thanks very much man! – salesh Aug 15 '15 at 11:37
  • 2
    @SasaCvetkovic We have $$\frac{e^{2x}x^8}{1+e^{2x}}+\frac{x^8}{1+e^{2x}}=\frac{(e^{2x}+1)x^8}{(1+e^{2x})}=x^8$$ Thanks! – Olivier Oloa Aug 15 '15 at 11:38
  • 1
    @SasaCvetkovic This is a pretty trick which I did not invent. Don't forget it now :). Ok, I will find some references for you. – Olivier Oloa Aug 15 '15 at 11:40
  • @OlivierOloa God bless you! I need to learn this tricks are amazing! Thank you for helping and patience i wish you best!! – salesh Aug 15 '15 at 11:42
  • 1
    @SasaCvetkovic You may have a look at this reference concerning integrals:http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511617041 – Olivier Oloa Aug 15 '15 at 16:51
  • 1
    @OlivierOloa: I've added an answer providing some info about this technique. And as I can see right now, your last comment points to another highlight regarding interesting integrals! :-) – Markus Scheuer Aug 15 '15 at 17:23
7

The answer from @OlivierOloa presents a really cool trick and I'd like to add some information around it. This might help to apply this technique to similar expressions.

The following holds true. If the integral has the form:

\begin{align*} \int_{-a}^{a}\frac{p(x)}{1+q(x)}\,dx \end{align*}

with

  • $p(x)$ is an even function, i.e. $p(x)=p(-x)$

  • $q(x)q(-x) = 1$

then

\begin{align*} \int_{-a}^{a}\frac{p(x)}{1+q(x)}\,dx=\frac{1}{2}\int_{-a}^{a}p(x)\,dx \end{align*}

A reasoning is given below. But first let's check our example.

The current integral is symmetric around $x=0$

\begin{align*} \int_{-3}^{3}\frac{x^8}{1+e^{2x}} \end{align*}

with an even function $p(x)=x^8$ and a function $q(x)=e^{-2x}$ with \begin{align*} q(x)q(-x)=e^{-2x}e^{2x}=1 \end{align*}

Now recall that each function $f(x)$ can be uniquely written as sum of an odd function $f_o(x)$ and of an even function $f_e(x)$, since \begin{align*} f(x)&=f_o(x)+f_e(x)\\ f_o(x)&=\frac{1}{2}\left(f(x)-f(-x)\right)\\ f_e(x)&=\frac{1}{2}\left(f(x)+f(-x)\right) \end{align*}

Let's define

\begin{align*} f(x)=\frac{p(x)}{1+q(x)} \end{align*} with $f_e(x)$ it's even and $f_o(x)$ it's odd part.

Since the integral is symmetric around $x=0$ the odd part vanishes and we obtain

\begin{align*} \int_{-a}^{a}f(x)\,dx&=\int_{-a}^{a}f_e(x)\,dx\\ &=\frac{1}{2}\int_{-a}^{a}\left(f(x)+f(-x)\right)\,dx\\ &=\frac{1}{2}\int_{-a}^{a}\left(\frac{p(x)}{1+q(x)}+\frac{p(-x)}{1+q(-x)}\right)\,dx\\ &=\frac{1}{2}\int_{-a}^{a}p(x)\frac{1+q(-x)+1+q(x)}{1+q(x)+q(-x)+q(x)q(-x)}\tag{1}\,dx\\ &=\frac{1}{2}\int_{-a}^{a}p(x)\frac{2+q(x)+q(-x)}{2+q(x)+q(-x)}\tag{2}\,dx\\ &=\frac{1}{2}\int_{-a}^{a}p(x)\,dx \end{align*}

In (1) we use the fact that $p(x)$ is even and in (2) we use $q(x)q(-x)=1$.

$$ $$

In the current situation we obtain \begin{align*} \int_{-3}^{3}\frac{x^8}{1+e^{-2x}}\,dx&=\frac{1}{2}\int_{-3}^{3}\left(\frac{x^8}{1+e^{-2x}}+\frac{x^8}{1+e^{2x}}\right)\,dx\\ &=\frac{1}{2}\int_{-3}^{3}x^8\frac{1+e^{2x}+1+e^{-2x}}{1+e^{-2x}+e^{2x}+e^{-2x}e^{2x}}\,dx\\ &=\frac{1}{2}\int_{-3}^{3}x^8\frac{2+e^{-2x}+e^{2x}}{2+e^{-2x}+e^{2x}}\,dx\\ &=\frac{1}{2}\int_{-3}^{3}x^8\,dx \end{align*}

Note: This technique can be found e.g. in Inside Interesting Integrals written by P.J. Nahin.

He applies this technique to the seemingly complicated integral

\begin{align*} \int_{-1}^{1}\frac{\cos(x)}{1+e^{(1/x)}}\,dx \end{align*}

which becomes easy if you know the trick.

Markus Scheuer
  • 112,413
4

Using $\displaystyle\int_a^bf(y)\ dy=\int_a^bf(a+b-y)\ dy,$

$$I=\int_{-a}^a\frac{x^{2n}}{1+e^{mx}}dx=\int_{-a}^a\frac{(-a+a-x)^{2n}}{1+e^{m(-a+a-x)}}dx=\int_{-a}^a\dfrac{x^{2n}e^{mx}}{1+e^{mx}}dx$$

$$I+I=\int_{-a}^a\frac{x^{2n}}{1+e^{mx}}dx+\int_{-a}^a\dfrac{x^{2n}e^{mx}}{1+e^{mx}}dx=\int_{-a}^ax^{2n}\ dx=?$$

1

Let $$\displaystyle I =\int_{-3}^{3}\frac{x^8}{1+e^{2x}}dx................(1)\;,$$

Now Let $x=-t\;,$ Then $dx = -dt$ and Changing Limit, We get

$$\displaystyle I = -\int_{3}^{-3}\frac{t^8}{1+e^{-2t}}dt = \int_{-3}^{3}\frac{t^8\cdot e^{2t}}{1+e^{2t}}dt = \int_{-3}^{3}\frac{x^{8}\cdot e^{2x}}{1+e^{2x}}dx$$

So $$\displaystyle I = \int_{-3}^{3}\frac{x^{8}\cdot e^{2x}}{1+e^{2x}}dx.................(2)$$

Above we have used $$\displaystyle \bullet \int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx$$ and the used $$\displaystyle \int_{a}^{b}f(t)dt = \int_{a}^{b}f(x)dx$$

So we get $$\displaystyle 2I = \int_{-3}^{3}\frac{x^8\cdot \left(1+e^{2x}\right)}{1+e^{2x}}dx = \int_{-3}^{3}x^8dx = 2\int_{0}^{3}x^8dx = \frac{2\cdot 3^9}{9}$$

So we get $$\displaystyle I = \int_{-3}^{3}\frac{x^{8}}{1+e^{2x}}dx = 3^7$$

juantheron
  • 56,203