2

The number $(12\ldots(b-1))$ in base $b$ has the property that when multiplied by any integer $1\le k\le b-1$ which is coprime to $b-1$, its digits are permuted. Why?

For example in base 10, \begin{eqnarray} 123456789&*2=& 246913578\\ &*4=& 493827156\\ &*5=& 617283945\\ &*7=& 864197523\\ &*8=& 987654312 \end{eqnarray}

amWhy
  • 210,739
Erfan Salavati
  • 215
  • 2
  • 9

1 Answers1

0

I'll rederive Henry's result, and extend it, since I did it while he entered his comment.

If we replicate the OP's computation, but with multiplier 3, we find that 3 x 123456789 = 370370370370.

This leads to the conjecture that if $m$ and $b-1$ are relatively prime, then $m\cdot s_b$ is a permutation of the digits.

I can show that this is true for $m = b-2$. The method I use might be generalized for other $m$.

(Comment added later: if we look at the products for base 10, notice that for 8 there are 8 decreasing digits before the final 2, for 7 there are 4 and 4 decreasing before the final 3, and for 5 there are 4 pairs of decreasing digits before the final 5. This might be provable using the results at the end of my answer.)

To show $s_b =\sum_{k=1}^{b-1} k b^{b-k-1} =\frac{b^b-b}{(b-1)^2}-1 $.

Since

$\begin{array}\\ \sum_{k=1}^{n} k r^{k-1} &=\frac{1-r^{n+1}}{(1-r)^2}-\frac{(n+1)r^n}{1-r}\\ &=\frac{1-r^{n+1}-(1-r)(n+1)r^n}{(1-r)^2}\\ &=\frac{1-(n+1)r^n+nr^{n+1}}{(1-r)^2}\\ \end{array} $

putting $r = 1/b$ and $n = b-1$,

$\begin{array}\\ s_b &=\sum_{k=1}^{b-1} k b^{b-k-1}\\ &=b^{b-2}\sum_{k=1}^{b-1} k b^{-k+1}\\ &=b^{b-2}\sum_{k=1}^{b-1} k (1/b)^{k-1}\\ &=b^{b-2}\frac{1-b(1/b)^{b-1}+(b-1)(1/b)^b}{(1-1/b)^2}\\ &=\frac{b^{b-2}-1+(b-1)/b^2}{(1-1/b)^2}\\ &=\frac{b^b-b^2+b-1}{(b-1)^2}\\ &=\frac{b^b-(b^2-b+1)}{(b-1)^2}\\ &=\frac{b^b-b-(b^2-2b+1)}{(b-1)^2}\\ &=\frac{b^b-b}{(b-1)^2}-1\\ &=b\frac{b^{b-1}-1}{(b-1)^2}-1\\ &=b\frac{(b-1)\sum_{k=0}^{b-2}b^k}{(b-1)^2}-1 \quad\text{(now I try to look at the base b digits)}\\ &=b\frac{\sum_{k=0}^{b-2}b^k}{b-1}-1\\ &=\frac{\sum_{k=0}^{b-2}b\ b^k}{b-1}-1\\ &=\frac{\sum_{k=0}^{b-2}(b-1+1)\ b^k}{b-1}-1\\ &=\sum_{k=0}^{b-2} b^k+\frac{\sum_{k=0}^{b-2}b^k}{b-1}-1\\ &=\sum_{k=1}^{b-2} b^k+\frac{\sum_{k=0}^{b-2}b^k}{b-1}\\ \end{array} $

From this, $m\cdot s_b =m\sum_{k=1}^{b-2} b^k+m\frac{\sum_{k=0}^{b-2}b^k}{b-1} $. This is, in base $b$, $b-2$ $m$'s and a zero digit added to $m$ times $b-1$ $m$'s divided by $b-1$.

If $m=b-2$, which is relatively prime to $b-1$,

$\begin{array}\\ (b-2)\cdot s_b &=(b-2)\sum_{k=1}^{b-2} b^k+(b-2)\frac{\sum_{k=0}^{b-2}b^k}{b-1}\\ &=(b-2)\sum_{k=1}^{b-2} b^k+(b-1-1)\frac{\sum_{k=0}^{b-2}b^k}{b-1}\\ &=(b-2)\sum_{k=1}^{b-2} b^k+\sum_{k=0}^{b-2}b^k-\frac{\sum_{k=0}^{b-2}b^k}{b-1}\\ &=1+(b-1)\sum_{k=1}^{b-2} b^k-\frac{\sum_{k=0}^{b-2}b^k}{b-1}\\ &=(b-2)+(b-1)\sum_{k=1}^{b-2} b^k-\frac{b^{b-1}-1}{(b-1)^2}\\ &=1+(b-1)\sum_{k=1}^{b-2} b^k-\frac{s_b+1}{b}\\ \end{array} $.

$s_b+1 =1+\sum_{k=1}^{b-1} k b^{b-k-1} =b+\sum_{k=1}^{b-2} k b^{b-k-1} $ so $\frac{s_b+1}{b} =1+\sum_{k=1}^{b-2} k b^{b-k-2} $ and this has, in base $b$, the digits $1, 2, ..., b-4, b-3, b-1$ (the 1 changes the last b-2 to b-1).

Subtracting this from $b-1, b-1, ..., b-1, b-1, 1$, we get $b-1, b-2, b-3, ..., 3, 1, 2$ which is a permutation of 1 through $b-1$.

That's enough for me, for now.

marty cohen
  • 110,450
  • Not an answer Not even close to answering the question (and there are much simpler ways to derive that equation in Henry's comment). Please don't post responses to comments as answers. – Bill Dubuque Mar 01 '25 at 04:14