I can't understand the proof of Chinese Remainder Theorem
let
$x ≡ a_1 (\text{mod }m_1 ),$
$x ≡ a_2 (\text{mod }m_2 ),$
·
·
·
$x ≡ a_n (\text{mod }m_n )$
such that $m_1,m_2,...,m_n$ are relatively primes
$m = m_1 m_2 · · · m_n$
$M_k = m/m_k$ .... for $k=1,2,3,...,n$
and as $\gcd(M_k,m_k)=1$, then $M_ky_k≡1(\text{mod }m_k)$
then when $x=a_1M_1y_1+a_2M_2y_2+...+a_nM_ny_n$
will satisfy all the equations as $M_j ≡ 0\;(\text{mod }\>m_k)$ , $j\neq k$
but how $x ≡ s\;(\text{mod }\>N)$
and $s$ satisfy all the equations
Eg : $x ≡ 2\;(\text{mod }\>3),$
$x ≡ 3\;(\text{mod }\>5)$
$x ≡ 2\;(\text{mod }\>7)$
$m =3*5*7=105$ , $M_1=35$ , $M_2=21$ , $M_1=15$
$y_1=2$ , $y_2=1$ , $y_3=1$
$x=2*35*2+3*21*1+2*15*1=233$
$x ≡ 233\;(\text{mod }\>105 )\ldots x ≡ 23\;(\text{mod }\>105 )$
so $23$ satisfy all the equations, what is the proof of that ?
or if there is another easier proof, I want it.