Non-Calculus Solution:
Let us first look at solutions $(x,y)\in\mathbb{R}_{>0}\times \mathbb{R}_{>0}$ to $x^y=y^x$ such that $x > y$. Let $r:=\frac{x}{y}$. Then,
$$y^r=y^{x/y}=x=ry\,.$$
Thus, $y=r^{\frac{1}{r-1}}$, and $x=ry=r^{\frac{r}{r-1}}$. Therefore, all solutions to $x^y=y^x$ with $x>y>0$ take the form $(x,y)=\left(r^{\frac{r}{r-1}},r^{\frac{1}{r-1}}\right)$, where $r>1$ is arbitrary.
Now, if we want rational solutions, then $r=\frac{p}{q}$ for some $p,q\in\mathbb{N}$ with $\gcd(p,q)=1$. Hence, the solution $(x,y)$ associated to $r=\frac{p}{q}$ is $(x,y)=\left(r^{\frac{p}{p-q}},r^{\frac{q}{p-q}}\right)$. As $\gcd(p,p-q)=1=\gcd(q,p-q)$, $r$ must be a $(p-q)$-th power. That is, $p=u^{p-q}$ and $q=v^{p-q}$ for some $u,v\in\mathbb{N}$. As $r>1$, we get $p>q$ and so $u >v$. Thus,
$$p-q=u^{p-q}-v^{p-q}=(u-v)\left(u^{p-q-1}+u^{p-q-2}v+\ldots+uv^{p-q-2}+v^{p-q-1}\right)\geq (p-q)(u-v)\,.$$
Hence, we must have $u-v=1$ and $p-q=1$. Ergo, $r=1+\frac{1}{q}$, $x=\left(1+\frac{1}{q}\right)^{q+1}$, and $y=\left(1+\frac{1}{q}\right)^q$. Thence, all rational solutions to $x^y=y^x$ with $x>y$ are of the form $$(x,y)=\left(\left(1+\frac{1}{q}\right)^{q+1},\left(1+\frac{1}{q}\right)^q\right)$$
where $q\in\mathbb{N}$.
Finally, to get integer solutions, we note that, for $q\in\mathbb{N}$, $1+\frac{1}{q}$ is an integer if and only if $q=1$. Furthermore, any positive-integer power of a nonintegral rational number is nonintegral. Therefore, only $q=1$ can make $(x,y)=\left(\left(1+\frac{1}{q}\right)^{q+1},\left(1+\frac{1}{q}\right)^q\right)$ have entries in $\mathbb{N}$. Ergo, $(x,y)=(4,2)$ is the only positive-integer solution to $x^y=y^x$ with $x>y$.