Here is a contribution using basic complex variables.
We will compute the number of trees on $n$ nodes and having $q$
leaves.
The combinatorial class equation for ordered rooted trees with leaves marked is
$$\def\textsc#1{\dosc#1\csod}
\def\dosc#1#2\csod{{\rm #1{\small #2}}}
\mathcal{T} = \mathcal{Z}\times \mathcal{U}
+ \mathcal{Z} \times \textsc{SEQ}_{\ge 1}(\mathcal{T})
\quad\text{or}\quad
\mathcal{T} = \mathcal{Z}\times\mathcal{U}
+ \mathcal{Z} \times \sum_{p\ge 1} \mathcal{T}^p.$$
This yields the functional equation for the generating function $T(z)$
$$T(z) = zu + z\frac{T(z)}{1-T(z)}$$
or $$z = \frac{T(z)}{u+T(z)/(1-T(z))}
= \frac{T(z)(1-T(z))}{T(z)+u(1-T(z))}.$$
Note that leaves in addition to being marked as such also carry the
node marker so that the total number of nodes includes the leaves. If
this is not desired subtract the number of leaves from the number of
nodes to get the count of genuine internal nodes.
Starting the computation we seek
$$T_n(u) = \frac{1}{2\pi i}
\int_{|z|=\gamma} \frac{1}{z^{n+1}} T(z) \; dz.$$
and will compute this by Lagrange inversion.
Put $w=T(z)$ so that
$$dz =
\left(\frac{1-2w}{w+u(1-w)}
- \frac{w(1-w)}{(w+u(1-w))^2} (1-u) \right) dw.$$
This yields the two integrals
$$A = \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(w+u(1-w))^{n+1}}{(w(1-w))^{n+1}} w
\frac{1-2w}{w+u(1-w)} \; dw
\\ = \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(w+u(1-w))^{n}}{w^n (1-w)^{n+1}} (-w+(1-w))\;dw
\\ = - \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(w+u(1-w))^{n}}{w^{n-1} (1-w)^{n+1}} \; dw
\\ + \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(w+u(1-w))^{n}}{w^n (1-w)^{n}} \; dw.$$
and
$$B = -\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(w+u(1-w))^{n+1}}{(w(1-w))^{n+1}} w
\frac{w(1-w)}{(w+u(1-w))^2} (1-u) \; dw
\\ = - (1-u)\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{(w+u(1-w))^{n-1}}{w^{n-1} (1-w)^{n}} \; dw.$$
We extract the coeffcient in $u$ first. The integral $A$ gives two
pieces
$$-{n\choose q}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{w^{n-q}(1-w)^q}{w^{n-1} (1-w)^{n+1}} \; dw
\\ = -{n\choose q}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{w^{q-1} (1-w)^{n-q+1}} \; dw
= -{n\choose q} {n-2\choose n-q}$$
and
$${n\choose q}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{w^{n-q}(1-w)^q}{w^{n} (1-w)^{n}} \; dw
\\ = {n\choose q}
\frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{w^{q} (1-w)^{n-q}} \; dw
= {n\choose q} {n-2\choose n-q-1}.$$
The integral in $B$ also gives two pieces
$$-{n-1\choose q} \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{w^{n-1-q} (1-w)^{q}}{w^{n-1} (1-w)^{n}} \; dw
\\ = -{n-1\choose q} \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{w^{q} (1-w)^{n-q}} \; dw
= -{n-1\choose q} {n-2\choose n-q-1}.$$
and
$${n-1\choose q-1} \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{w^{n-q} (1-w)^{q-1}}{w^{n-1} (1-w)^{n}} \; dw
\\ = {n-1\choose q-1} \frac{1}{2\pi i}
\int_{|w|=\epsilon}
\frac{1}{w^{q-1} (1-w)^{n-q+1}} \; dw
= {n-1\choose q-1} {n-2\choose n-q}.$$
This yields the following answer before simplification:
$${n\choose q} {n-2\choose n-q-1}-{n\choose q} {n-2\choose n-q}
+ {n-1\choose q-1} {n-2\choose n-q}
- {n-1\choose q} {n-2\choose n-q-1}.$$
This simplifies to
$${n\choose q} {n-2\choose n-q}
\left(\frac{n-q}{q-1} - 1
+ \frac{q}{n}
- \frac{n-q}{n} \frac{n-q}{q-1}\right)
\\ = {n\choose q} {n-2\choose n-q}
\frac{n-q}{n} \frac{1}{q-1}
= \frac{1}{q-1} {n-1\choose q} {n-2\choose n-q}
\\ = \frac{1}{n-1} {n-1\choose q} {n-1\choose n-q}.$$
The generating function $T_n(u)$ can be verified using Maple's
combstruct package. This is the code.
with(combstruct);
gf_cs :=
proc(n)
option remember;
local trees, leaves;
trees := { T=Union(Prod(Z, U),
Prod(Z, Sequence(T, 1<= card))),
Z=Atom, U=Epsilon };
leaves :=
proc(struct)
if type(struct, function) then
return add(leaves(op(q, struct)), q=1..nops(struct));
fi;
if struct = Z then return 0 fi;
return 1;
end;
add(u^leaves(t), t in allstructs([T, trees], size=n));
end;
CF := (n,q) -> 1/(n-1)*binomial(n-1,q)*binomial(n-1,n-q);
gf_verif := n -> add(CF(n,q)*u^q, q=1..n-1);
This will produce e.g. for $T_9(u)$ the generating function
$${u}^{8}+28\,{u}^{7}+196\,{u}^{6}+490\,{u}^{5}+490\,{u}^{4}
+196\,{u}^{3}+28\,{u}^{2}+u,$$
which matches the binomial coefficient formula.
Addendum. We show that the counts of the number of trees
classified according the number of leaves does indeed add up to the
Catalan numbers in order to verify the above computation.
We have the sum
$$\frac{1}{n-1}\sum_{q=1}^{n-1} {n-1\choose q} {n-1\choose n-q}.$$
We can extend this to include $q=0$ because the second binomial
coefficient is zero in that case:
$$\frac{1}{n-1}\sum_{q=0}^{n-1} {n-1\choose q} {n-1\choose n-q}.$$
Put $${n-1\choose n-q}
= \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^{n-1}}{z^{n-q+1}} \; dz.$$
This yields for the sum
$$\frac{1}{n-1}\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^{n-1}}{z^{n+1}}
\sum_{q=0}^{n-1} {n-1\choose q} z^q \; dz
\\ = \frac{1}{n-1}\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^{n-1}}{z^{n+1}}
(1+z)^{n-1} \; dz
\\ = \frac{1}{n-1}\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^{2n-2}}{z^{n+1}} \; dz
\\ = \frac{1}{n-1}
{2n-2\choose n}.$$
This is
$$\frac{(2n-2)!}{n!\times (n-1)!}
= \frac{1}{n} {2n-2\choose n-1}.$$
We now recognize the Catalan number
formula shifted by one, obtaining
$$ 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \ldots $$
from $n=2$ on.
Addendum. The above admits radical simplification, wich can be found at this MSE link.