Hi I was reading Cohn's book and I have problem with the following exercises (only the return of b is what I don't know), I'd appreciate any help and suggestion, if necessary, for a):
a) Show that a subset $B$ of $\bf{R}$ is Lebesgue measurable iff $\lambda^*(I)=\lambda^*(I\cap B)+\lambda^*(I\cap B^c)$ for any open interval.
b) Let $I$ a bounded subinterval of $\bf{R}$. Show that a subset $B$ of $I$ is Lebesgue measurable iff it satisfies $\lambda^*(I)=\lambda^*(B)+\lambda^*(I\cap B^c)$
a) We only show the sufficiently. Let $A\subset \bf{R}$ and we may assume that $\lambda^* (A)<+\infty$. Let $\{(a_n,b_n)\}$ a sequence of open intervals such that $A\subset \bigcup_n(a_n,b_n)$ and $\sum_nb_n-a_n<\lambda^* (A)+\varepsilon$, where $\varepsilon$ is an arbitrary positive number. Thus
\begin{align}\lambda^*(A\cap B)+\lambda^*(A\cap B^c)\le \sum _n\lambda^*((a_n,b_n)\cap B)+\sum_n\lambda^*((a_n,b_n)\cap B^c)\\ = \sum _n\lambda^*((a_n,b_n)\cap B)+\lambda^*((a_n,b_n)\cap B^c)\\=\sum _n\lambda^*((a_n,b_n))=\sum_nb_n-a_n\\<\lambda^* (A)+\varepsilon\end{align}
Letting $\varepsilon \downarrow0$, $\lambda^*(A\cap B)+\lambda^*(A\cap B^c)\le \lambda^* (A)$. Hence $B$ is Lebesgue measurable.
(b) One side is obvious, but the problem is with the return...