If $G$ is a finite group, a bijection $f\colon G\to G$ is called a (normed) $\boldsymbol{\mathfrak{R}}$-automorphism if
$f$ maps subgroups of $G$ to subgroups of $G$, and
$f(gH) = f(g) f(H)$ for any $g\in G$ and $H \leq G$, i.e. $f$ maps cosets of $H$ to cosets of $f(H)$.
Any automorphism of a group is an $\mathfrak{R}$-automorphism, but the converse does not hold. For example, if $G$ is a cyclic group of prime order, then any permutation of the elements that fixes the identity is an $\mathfrak{R}$-automorphism.
In my answer to this question, I observed that the group $$ \mathbb{Z}_9 \rtimes \mathbb{Z}_3 \;=\; \langle a,b\mid a^9=b^3=1,b^{-1}ab = a^4\rangle $$ has an $\mathfrak{R}$-automorphism defined by $$ f(a^jb^k) = a^{-j}b^{-k} $$ for all $j,k$. My question is
Is there any simple way to prove that $f$ is an $\mathfrak{R}$-automorphism?
The only proof I have is by brute force: we write down all the cosets of all of the subgroups and observe that $f$ maps cosets to cosets.
More generally,
Are there any good techniques for proving that a given function is an $\mathfrak{R}$-automorphism?