There's something quite interesting about the number $1191$:
- this number is a semiprime ($1191= 3 \cdot 397$),
- the concatenation of its prime factors in any order are semiprimes ($3397$ and $3973$ are semiprimes), but not just that,
- if you concatenate $1191$ and its prime factors $3$ and $397$ in any order, the result is always a semiprime (i.e. $11913397$, $11913973$, $31191397$, $39711913$, $33971191$, and $39731191$ are all semiprimes).
I call such numbers semiprime-to-the-bones, or STB.
Definitions: Let $s = p \cdot q$ be a semiprime.
I call $s$ an STB number if these following 8 concatenations are all semiprimes: $p \mathop{^\smallfrown} q$, $q \mathop{^\smallfrown} p$, $s \mathop{^\smallfrown} p \mathop{^\smallfrown} q$, $s \mathop{^\smallfrown} q \mathop{^\smallfrown} p$, $p \mathop{^\smallfrown} s \mathop{^\smallfrown} q$, $q \mathop{^\smallfrown} s \mathop{^\smallfrown} p$, $p \mathop{^\smallfrown} q \mathop{^\smallfrown} s$, $q \mathop{^\smallfrown} p \mathop{^\smallfrown} s$, where $a \mathop{^\smallfrown} b$ means the number whose decimal representation is the decimal representation of $a$ followed by that of $b$ (i.e. concatenation).
I call $s$ a nice STB number if it is an STB number whose reversal is also semiprime.
I call $s$ a super STB number if it is an STB number and the following are all also semiprimes: $s \mathop{^\smallfrown} p$, $s \mathop{^\smallfrown} q$, $p \mathop{^\smallfrown} s$, $q \mathop{^\smallfrown} s$.
I've searched numbers up to $3000$, but the only STB number I've found is $1191$.
Questions:
- Can you find a larger example of STB numbers (or nice STB numbers).
- Do super STB numbers exist?