$$\det \begin{pmatrix}
(b+c)^2 & a^2 &a^2\\
b^2 & (c+a)^2 & b^2\\
c^2&c^2&(a+b)^2
\end{pmatrix}$$
$$\det \begin{pmatrix}
(b+c)^2-a^2 & 0 & a^2\\
0 & (c+a)^2-b^2 & b^2\\
c^2-(a+b)^2 & c^2-(a+b)^2 & (a+b)^2
\end{pmatrix}$$
By $C_1-C_3$, $C_2-C_3$
$$\det \begin{pmatrix}
(b+c+a)(b+c-a) & 0 & a^2\\
0 & (c+a+b)(c+a-b) & b^2\\
(c+a+b)(c-a-b) & (c+a+b)(c-a-b) & (a+b)^2
\end{pmatrix}$$
$$(a+b+c)^2\det \begin{pmatrix}
(b+c-a) & 0 & a^2\\
0 & (c+a-b) & b^2\\
(c-a-b) & (c-a-b) & (a+b)^2
\end{pmatrix}$$
By Taking Common $(a+b+c)$ from each $C_1$ and $C_2$
$$(a+b+c)^2\det \begin{pmatrix}
(b+c-a) & 0 & a^2\\
0 & (c+a-b) & b^2\\
-2b & -2a & 2ab
\end{pmatrix}$$
By $R_3-(R_1+R_2)$
$$(a+b+c)^2\det \begin{pmatrix}
(b+c-a) & 0 & a^2\\
0 & (c+a-b) & b(c+a)\\
(c-a-b) & (c-a-b) & 0
\end{pmatrix}$$
By $C_3+bC_2$
Now By expanding determinant we get
$$=2abc(a+b+c)^3$$