NOTE:
I wanted to give a special thanks to @robjon for his insightful comments.
We first observe that $\lim_{\epsilon\to 0}e^{-\tan z/\epsilon}=0$ unless $z=\ell \pi$, $\ell$ an integer. Therefore, all of the "action" of the integration will take place over intervals around $\ell \pi$. So, let's first see what is happening for $0<x<\pi/2$.
In the spirit of Laplace's Method, we have for $0<z<\pi/2$, $\tan^z =z^2+O(z^4)$ and thus for $0<x<\pi/2$
$$\begin{align}
\epsilon^{-1/2}\int_0^xze^{-\tan^2z/\epsilon}dz&\sim\epsilon^{-1/2}\int_0^xze^{-z^2/\epsilon}dz\\\\
&=\epsilon^{-1/2}\left.\left(-\epsilon^{-z^2/\epsilon}\right)\right|_{z=0}^{z=x}\\\\
&=\epsilon^{1/2}\left(1-e^{-x^2/\epsilon}\right)
\end{align}$$
which clearly goes to zero as $\epsilon\to 0$.
Next, we observe that the integration around singularities of the tangent function pose no challenge. Thus, for a general $(L-1)\pi<x<L\pi$, and $\delta >0$ we can write
$$\begin{align}
\epsilon^{-1/2}\int_0^x ze^{-\tan^2z/\epsilon}dz&=\epsilon^{-1/2}\sum_{\ell=0}^{L-2}\left(\int_{\ell \pi+\delta}^{(\ell+1)\pi-\delta}ze^{-\tan^2z/\epsilon}dz+\int_{(\ell+1)\pi-\delta}^{(\ell+1)\pi+\delta}ze^{-\tan^2z/\epsilon}dz\right)\\\\
&+\epsilon^{-1/2}\int_{(L-1)\pi+\delta}^{x}ze^{-\tan^2z/\epsilon}dz \tag 1\\\\
\end{align}$$
We observe that in $(1)$ the only integrals that will contribute in the limit as $\epsilon \to 0$ are those around integer multiples of $\pi$. Thus, we have for $(L-1)\pi<x<L\pi$ and $\delta>0$
$$\begin{align}
\lim_{\epsilon \to 0}\epsilon^{-1/2}\int_0^x ze^{-\tan^2z/\epsilon}dz&=\lim_{\epsilon \to 0} \epsilon^{-1/2}\sum_{\ell=0}^{L-2}\left(\int_{(\ell+1)\pi-\delta}^{(\ell+1)\pi+\delta}ze^{-\tan^2z/\epsilon}dz\right) \tag 2\\\\
\end{align}$$
We proceed to evaluate the integrals in $(2)$. To that end we have
$$\begin{align}
\epsilon^{-1/2}\int_{(\ell+1)\pi-\delta}^{(\ell+1)\pi+\delta}ze^{-\tan^2z/\epsilon}dz &=\epsilon^{-1/2}\left(\int_{-\delta}^{\delta}ze^{-\tan^2z/\epsilon}dz+(\ell +1)\pi\int_{-\delta}^{\delta}e^{-\tan^2z/\epsilon}dz\right)\\\\
&=(\ell +1)\pi\epsilon^{-1/2}\int_{-\delta}^{\delta}e^{-\tan^2z/\epsilon}dz\\\\
&\sim (\ell +1)\pi\epsilon^{-1/2}\int_{-\delta}^{\delta}e^{-z^2/\epsilon}dz\\\\
&= (\ell +1)\pi\int_{-\delta/\epsilon^{1/2}}^{\delta/\epsilon^{1/2}}e^{-z^2}dz\\\\
&\to (\ell +1)\pi^{3/2}
\end{align}$$
Summing over $\ell$ we find for $(L-1)\pi<x<L\pi$
$$\lim_{\epsilon \to 0}\epsilon^{-1/2}\int_0^xze^{-\tan^2z/\epsilon}dz=\frac{L(L-1)\pi^{3/2}}{2}$$
One final note concerns the case in which $x=L\pi$. For that case, we see that we need to add one more integral, namely
$$\begin{align}
\lim_{\epsilon\to 0}\epsilon^{-1/2}\int_{L\pi-\delta}^{L\pi}ze^{-\tan^z/\epsilon}&=L\pi\int_{-\infty}^0e^{-z^2}dz\\\\
&=\frac12 L\pi^{3/2}
\end{align}$$
Thus, for $x=L\pi$ we have
$$\lim_{\epsilon \to 0}\epsilon^{-1/2}\int_0^xze^{-\tan^2z/\epsilon}dz=\frac{L^2\pi^{3/2}}{2}$$
Putting it all together we have
$$\lim_{\epsilon \to 0}\epsilon^{-1/2}\int_0^xze^{-\tan^2z/\epsilon}dz=
\begin{cases}
\frac{L(L-1)\pi^{3/2}}{2},&(L-1)\pi<x<L\pi\\\\
\frac{L^2\pi^{3/2}}{2},&x=L\pi
\end{cases}
$$
f[x_,e_]:=1/Sqrt[e]NIntegrate[z Exp[-Tan[z]^2/e],{z,0,x},WorkingPrecision->20]– robjohn Jul 08 '15 at 10:01