We show that if $a_n$ is monotonically decreasing, then the series
$$\sum_{n=1}^{\infty}a_n\sin (nx)$$
is uniformly convergent on $[\epsilon,2\pi-\epsilon]$, for any fixed $\epsilon>0$.
To test the uniform convergence we use this answer in which I showed that
$$\begin{align}
\left|\sum_{n=1}^N \sin(nx)\right| \le \frac12\left(1+\left|\cos (\frac{x}{2})\right|\right)\left|\csc\left(\frac{x}{2}\right)\right|
\end{align}$$
Now, for any fixed $\epsilon$, we have for $x\in [\epsilon,2\pi-\epsilon]$,
$$\begin{align}
\left|\sum_{n=1}^N \sin(nx)\right| &\le \frac12\left(1+\left|\cos (\frac{x}{2})\right|\right)\left|\csc\left(\frac{x}{2}\right)\right|\\\\
&\le \csc(\epsilon/2) \tag 1
\end{align}$$
For the Dirichlet test of $\sum_{n=1}^{\infty}a_n\sin (nx)$, we only require the following two conditions:
Condition $(1)$
The sequence $a_n$ decreases monotonically to zero.
Condition $(2)$
The partial sums $\sum_{n=1}^N \sin(nx)$ be bounded by a constant.
Condition $(1)$ is presumed while equation $(1)$ confirms Condition $(2)$.
Thus, if $a_n$ is monotonically decreasing, then for $x\in [\epsilon, 2\pi-\epsilon]$, for any fixed $\epsilon >0$, we have that
$$\bbox[5px,border:2px solid #C0A000]{\sum_{n=1}^{\infty}a_n\sin (nx)\,\,\text{converges uniformly}}$$
As a side note, we have that the series $\sum_{n=1}^N \sin x \sin(nx)$ converges for $x\in [0,2\pi]$
We have
$$\begin{align}
\left|\sum_{n=1}^N \sin x \sin(nx)\right| &\le \frac12\left(1+\left|\cos (\frac{x}{2})\right|\right)\left|\sin x\csc\left(\frac{x}{2}\right)\right|\\\\
&=\left(1+\left|\cos (\frac{x}{2})\right|\right)\left|\cos\left(\frac{x}{2}\right)\right|\\\\
&\le2 \tag 2
\end{align}$$
For the Dirichlet test of $\sum_{n=1}^{\infty}a_n\sin (x)\sin (nx)$, we only require the following two conditions:
Condition $(1)$
The sequence $a_n$ decreases monotonically to zero.
Condition $(2)$
The partial sums $\sum_{n=1}^N \sin (x) \sin(nx)$ be bounded by a constant.
Condition $(1)$ is presumed while equation $(2)$ confirms Condition $(2)$.
and we are done!